• 沒有找到結果。

以苔蘚桿菌生產聚麩胺酸之研究 范宜琮、施英隆

N/A
N/A
Protected

Academic year: 2022

Share "以苔蘚桿菌生產聚麩胺酸之研究 范宜琮、施英隆"

Copied!
3
0
0

加載中.... (立即查看全文)

全文

(1)

以苔蘚桿菌生產聚麩胺酸之研究 范宜琮、施英隆

E-mail: 9705106@mail.dyu.edu.tw

摘 要

培養基E(麩胺酸20g/L,檸檬酸12g/L,甘油80g/L,NH4Cl 7g/L,MgSO4 7H2O 0.5g/L,FeCl3 6H2O 0.04g/L,K2HPO4 0.5g/L,CaCl2 2H2O 0.15g/L,MnSO4 H2O 0.04g/L)為多株桿菌生產聚麩胺酸之最適培養基。本研究發現苔蘚桿

菌(Bacillus licheniformis) CCRC12826在培養基E中可生產聚麩胺酸5.23g/L,此與其他桿菌株於相同培養基所生產之聚麩胺 酸產量相差甚距。當探討以其他碳氮源或他們不同組合取代培養基E之碳氮源結果發現麩胺酸、檸檬酸、甘油與氯化銨仍 是Baccillus licheniformis CCRC12826生產聚麩胺酸之最佳碳氮源。因此本研究選定麩胺酸,檸檬酸甘油與pH等四個自變因 子,並以回應曲面法探討此四因子對Bacillus licheniformis CCRC12826生產聚麩胺酸之影響,經由一階回應區面實驗設計結 果,我們發現在培養基中麩胺酸、檸檬酸、甘油對聚麩胺酸產量有顯著的影響性而pH值則無影響性,就單因子對聚麩胺 酸的影響以甘油最為顯著(當濃度增加),其次是麩胺酸及檸檬酸,在因子間之交互影響性對聚麩胺酸產量,以甘油與麩胺 酸交互影響最為顯著(當濃度增加),由一階回應曲面設計法所得之結果,再以一階實驗之中心點(原點)加上實際爬升距離進 行陡升路徑實驗。陡升路徑之最高點為檸檬酸17.9g/L、麩胺酸55.4g/L、甘油148.4g/L、因此以此為新原點進行中心混成 實驗設計由中心混成實驗之數據進行二階模式的迴歸分析。此一模式對於描述實驗數據之適切程度,可由變異數分析加以 檢驗,由Fisher’s F檢驗之具有顯著性(p0.05),皆表示所迴歸得到的二次多項式模式適切甚佳。 本研究先以培養基E探 討Bacillus licheniformisCCRC12826生產聚麩胺酸,進而以回應曲面法探討最適產量,從一階回應曲面實驗設計、陡升路經 實驗設計到二階回應曲面實驗設計(中心混成實驗設計),聚麩胺酸產量從5.27g/L(Medium E)增至最終之21g/L(二階),產量 增加了300%,而麩胺酸、檸檬酸、甘油三碳源之最佳培養基為麩胺酸(65g/L)、檸檬酸(22g/L)、甘油(170g/L);以回應曲面 法探討聚麩胺酸生產之最適培養基,確實為有效的方法。

關鍵詞 : 聚麩胺酸 ; 回應曲面法 ; 苔蘚桿菌

目錄

目 錄 頁次 封面內頁 簽名頁 博碩士論文電子檔上網授權書iii 大葉大學碩士論文全文授權書iv 中文摘要 v 英文摘要…………

……….vii 誌謝ix 目錄x 圖目錄………

…xiii 表目錄……….xv 第一章 緒論1 第二章 文獻回顧4 2.1 聚麩胺酸之生 合成4 2.2 需使用L-麩胺酸之菌株7 2.2.2 Bacillus licheniformis ATCC9945a7 2.2.3 Bacillus subtilis IFO3335 ...13 2.3 不需用L-麩 胺酸之菌株………...16 2.3.1 Bacillus subtilis TAM-4...16 2.3.2 Bacillus lichenifromis A35...17 2.4 聚麩胺 酸之應用………18 2.4.1 聚麩胺酸在生醫材料(Biomaterial)上應用………...19 2.4.2 聚麩 胺酸在抗癌藥物(Antitumor drug)的應用………….20 2.4.3 聚麩胺酸在環境工程上的應用……….22 2.4.4 聚 麩胺酸處理廢水中重金屬……….22 2.4.5 聚麩胺酸在食品上的應用……….23 2.4.6 聚麩胺酸在化妝品上的應用……….23 2.4.7 回應區面法……….24 2.4.8 二水準因子設計實……….25 2.4.9 陡升路徑法..………...26 2.4.10中心混成設計..………..26 2.4.11 變異數分析法………..……….27 第三章 利用苔顯桿菌生產聚麩胺酸之搖瓶培養探討…………...31 3.1 前言………

…31 3.2 實驗材料………31 3.2.1 器材………

….31 3.2.2 藥品……….32 3.2.3 菌株………

…….32 3.2.4 實驗步驟……….33 3.2.4.1 預培養………

……..33 3.2.4.2聚麩胺酸產量探討………...33 3.2.5 聚麩胺酸純化………

……….34 3.3 培養基中碳源消耗分析………36 3.3.1 檢量線製備………

………….36 3.3.2 碳源之HPLC分析條……… 36 3.3.3 培養基中麩胺酸、檸檬酸濃度計算…………

………….36 3.4 結果與討論………41 3.4.1 培養基中之最適碳氮源研究………

……….41 3.4.2 搖瓶培養基中碳源酸鹼值黏度隨時間變化之情形…….41 第四章以回應區面法生產聚麩胺酸之碳源探討

……….48 4.1 前言………...48 4.2 材料與方法………

………...49 4.3 實驗材料………...49 4.3.1 培養方法………

………49 4.4 回應區面設計………...50 4.4.1 一階因子實驗設計………

………50 4.5 陡升路徑之實驗設計………...51 4.6 中心混成設計之實驗…

(2)

………...51 4.7 回應區面之模式設計適切性之統計檢驗………...51 4.8 結果與討論………

………...55 4.8.1 部分因子實驗設計………55 4.8.2 一階回應區 面模式適切性之統計檢驗………56 4.8.3 陡升實驗設計結果………56 4.8.4 中心混 成實驗設計結果………57 4.9 聚麩胺酸特性分析………...80 第五章 結論與建議………87 參考文獻………

…90 圖 目 錄 頁次 圖2.1 聚麩胺酸結構4 圖2.2 TCA循環 12 圖2.3 Bacillus subtilis IFO3335合成γ-PGA可能生合成路……

…15 圖2.4 回應區面圖29 圖2.5 回應區面進行步驟流程圖……….30 圖3.1 麩胺酸檢量線…………

……….37 圖3.2 檸檬酸檢量線.………38 圖3.3 高效液相層 析儀分析麩胺酸、檸檬酸標準圖譜……….39 圖3.4 培養112小時後,以高效液相層析儀分析培養基之圖譜……40 圖3.5 培養基中碳源消耗曲線……….45 圖3.6 γ-PGA產量與黏度對培養時間之關係圖….………

…..46 圖3.7 培養基之pH變化 ………47 圖4.1 延著最陡上升路徑各步階之γ-PGA產量 ……

……….64 圖4.2 檸檬與麩胺酸對生產聚麩胺酸產量之一階回應曲面圖與 等高線圖………

………….69 圖4.3 檸檬與甘油對生產聚麩胺酸產量之一階回應曲面圖與等 高線圖………

……….70 圖4.4 檸檬與pH對生產聚麩胺酸產量之一階回應曲面圖與等 高線圖………

….…71 圖4.5 麩氨酸與甘油對生產聚麩胺酸產量之一階回應曲面圖與 等高線圖………

….72 圖4.6 麩氨酸與pH對生產聚麩胺酸產量之一階回應曲面圖與 等高線圖………...………

…..73 圖4.7 甘油與pH對生產聚麩胺酸產量之一階回應曲面圖與等 高線圖………

….74 圖4.8 一階RSM實驗聚麩胺酸的產量觀測值與實際值之比較..75 圖4.9 一階RSM實驗之聚麩胺酸產率之期望值與殘差 值之常態 機率圖……….75 圖4.10 麩胺酸與檸檬酸對生產聚麩胺酸產量之二階回 應區面圖 與等高線圖………...76 圖4.11 檸檬酸與甘油對生產聚麩胺酸產量之二階回應區 面圖與 等高線圖………...77 圖4.11 麩胺酸與甘油對生產聚麩胺酸產量之二階回應區面 圖與 等高線圖……….……….78 圖4.12二階回應曲面實驗聚麩胺酸實際產率與預測值之比 較...79 圖4.13 二階回應曲面實驗聚麩胺酸產率之期望值與殘差值之常 態機率圖………

…..79 圖4.15 Dextran經由膠體穿透層析儀分析之圖譜………..81 圖4.16 聚麩胺酸經由膠體穿透層析儀分析之圖譜…

…………...82 圖4.17 聚麩胺酸水解氨基酸鑑定圖譜………...83 圖4.18 高效液相層析儀分析聚麩胺酸之標準 品………...84 圖4.17高效液相層析儀分析聚麩胺酸純化透析後之圖譜.………85 圖4.20照片(一)為聚麩胺酸之水溶液, 照片二為純化後之聚麩胺 酸.………86 表 目 錄 頁次 表2.1 目前生產聚麩胺酸 之菌株及碳、氮源之比較6 表2.2 Bacillus licheniformis ATCC9945a之培養基組成8 表2.3 聚麩胺酸可能應用之領域18 表3.1 碳源對以Bacillus licheniformis CCRC12826生產聚麩氨酸之 影響.………35 表3.2 氮源對以Bacillus licheniformis CCRC12826生產聚麩氨酸之 影響…….………

…35 表3.3 搖瓶培養基中碳源酸鹼值黏度隨時間變化之情形………….44 表4.1 24實驗設計之變數及層階53 表4.2 陡升路徑 實驗設計54 表4.3 中心混成實驗設計之變數及其層階……….55 表4.4 一階回應曲面設計之結果60 表4.5 24 因子設計結果之複迴歸分析表61 表4.6 24因子設計結果之變異數分析表(ANOVA table)62 表4.7 一階回應曲面實驗設計經由 迴歸分析觀測值與殘差值之比 較……….63 表4.8 陡升路徑實驗設計之結 果64 表4.9 中心混成實驗設計之結果65 表4.10中心混成實驗之複迴歸分析表……….66 表4.11中心混成 實驗之變異數分析表67 表4.12 二階回應曲面實驗設計之實驗值與經由迴歸分析殘差值 之比較………

………..………….68 參考文獻

參考文獻 Bruckner, V., Kovaca, J., Denes, G., 1953, Structure of poly-D-glutamic acid isolated from capsulated strains of Bacillus anthracis.

Nature, 172, 508 Buchanan,R.L., AND J. G. Philips, 1990, Response surface model for preicting the effects of temperature, pH, sodium chloride content. Sodium nitrite concentration and atmosphere on the growth of Listeria moncutogenes. J. Food Protection, 53 : 370-376. Cheng, C., Asada, Y., Aaida T., 1989. Production of γ-polyglutamic acid by Bacillus subtilis A35 under denitrifying conditions. Agric. Biol. Chem.

53,2369-2375. Cromwick, A.M., Gross, R. A., 1995a. Effect of manganese(Ⅱ) on Bacillus licheniformis ATCC9945A physiology and

γ-poly(glutamic acid)formation .Int.J. Biol. Macromol. 16, 265-275. Cromwick, A.M., Gross, R. A., 1995b., Investigation by NMR OF metabolic routes to bacterialγ-poly(glutamic acid) using 13C labeled citrate and glutamate as media carbon source. Can J.Microbiol. 41, 902-909.

Cromwick, A.M., Gross, R. A., 1996.Effect of Ph and aeration onγ-poly(glutamic acid) formation by Bacillus licheniformis in controlled batch fermator cultures Biotechnol. Bioeng. 50,222-227. Dearie, L., Toncheva, V., Dubruel, P.,Schacht,E.H., Barrett, L., Seymour, L.W., 2000.

Poly-L-glutamic acid derivatives as vectors for gene therapy. J.Control. Release 65, 187-202. Gardner, J.M., Troy, F. A., 1979. Chemistry and biosynthesis of the poly( γ-D-glutamyl)capsule in Bacillus licheniformis. J. Biol. Chem. 254, 6262-6269. Goto,A., Kunioka, M., 1992. Biosynthesis and hydrolysis of Poly( γ-glutamic acid) from Bacillus subtilis IFO3335. Biosci. Biotechnol. Biochem. 56,1031-1035. Haltrich, D., M. Press, and W. Steiner, 1993, Optimization of a culture medium for increased xylanase production by a wild strain of Schizophyllum commune. Enzyme

(3)

Microbiology Technology 15:854-860. Hara, T., Ueda, S., 1982. Regulation of polyglutamate production in Bacillus subtilis (natto); transformation of high PGA productivity. Agric. Biol. Chem. 46, 2275-2281. Hara, T., Aumayr, A., Fujio, Y., Ueda, S., 1982. Elimination of plasmid-linked polyglutamate production by Bacillus subtilis(natto) with acridine orange. Appl. Environ. Microbiol. 44, 1456-1458. Hara, T., Fujio, Y., Ueda, S., 1982. Polyglutamate production by Bacillus subtilis (natto).J. Appl. Biochem 4,112-120. He, L. M., Neu, M.P., Vanderberg, L.A., 2000. Bacillus licheniformis γ-glutamyl exopolymer; Physiochemical chemical characterization and U(Ⅵ) interaction. Environ. Sci. Technol. 34, 1694-1701.

Hasebe, K., Inagaki, M., 1999. Preparation composition for external use containing gamma-polyglutamic acid and vegetable extract in

combination. JP Patent 11240827. Ito, Y., Tanada, T., Ohmachi, T.,Asada, Y., 1996. Glutamic acid independent production of Poly( γ-glutamic acid) by Bacillus subtilis TAM-4. Biosci. Biotechnol. Biochem. 60, 1239-1242. King, E., Blacker, A., Bugg, T., 2000. Enzymatic Breakdown of Poly-γ-D-glutamic Acid in Bacillus licheniformis: Identification of a Polyglutamyl γ-Hydrolase Enzyme . Biomacromolecules. 1,75-83 Ko, Y. H, Gross, R. A., 1998. Effects of glucose and glycerol on γ-poly(glutamic acid) formation by Bacillus licheniformis ATCC9945a. Biotechnol Bioeng.

57,430-437. Kunioka, M., Goto, A., 1994. Biosynthesis of Poly( γ-glutamic acid ) from L-glutamic acid, citric acid, and ammonium sulfate in Bacillus subtilis IFO3335. Appl. Microbiol Biotechnol. 40, 867-872. Kunioka, M., 1995. Biosynthesis of Poly( γ-glutamic acid) from L-glutamine, citric acid, and ammonium sulfate in Bacillus subtilis IFO3335. Appl. Microbiol Biotechnol. 44, 501-506. Kunioka, M., 1997. Biosynthesis and chemical reactions of poly(amino acid)s from microorganisms. Appl. Microbiol. Biotechnol. 47, 469-475. Kunno,A., Taguchi, t., Yamaguchi, T., 1988. New use of polyglutamic acid for foods EP Patent 0284386 Leonard, C. G., Housewright, R.D., Thorne, C. B., 1958. Effect of metal ions on glutamyl polypeptide synthesis by Bacillus subtilis. J. Bacteriol. 76, 499-503. Leonard, C. G., Housewright, R.D., Thorne, C. B., 1958. Effect of metal ions on the optical specificity of glutamine synthetase and glutamyl transferase of Bacillus licheniformis. Biochem. Biophys. Acta 62, 432-434 Li, C., Yu, D. F., Newman, A., Cabral, F., Stephens, C., Hunter, N., Milas, L., Wallace, S., 1998. Complete regression of well-established tumors using novel water-soluble poly(L-glutamic acid)-paclitaxel conjugate. Cancer Res. Res 58, 2404-24009 Li, C., Price, J.E.,Milas, L., Hunter, N.R., Ke, S., Tansey, W., Charnsagavej, C., Wallace, S., 1999. Antitumor activity of poly(L-glutamic acid)-paclitaxel on syngeneic and Xenografed tumors. Clin Canser Res. 5, 891-897. McLean, R. C., Wolf, D. C., Ferris, F. G., Beveridge, T.. J., 1990. Metal-binding characteristics of the gamma-glutamyl capsular polmer of Bacillus licheniformis ATCC9945. Apply. Environ. Microbiol. 56, 3671-3677. Mitsuiki, M., Mizuno, A., Tanimoto, H., Motoki, M., 1998. Relationship between the antifreeze activities and the chemical structures of oligo- and poly(glutamic acid)s. J.

Agric. Food Chem. 46, 891-895 Ontni, Y., Tabata, Y., Ikada, Y., 1996. Anew biological glue from gelatin and poly(L-glutamic acid). J. Biomed.

Mater. Res. 31, 157-166. Ontni, Y., Tabata, Y., Ikada, Y., 1996.Rapidly curable biological glue composed of gelatin and poly(L-glutamic acid).

Biomaterials 17, 1381-1391. Ontni, Y., Tabata, Y., Ikada, Y., 1998. Effect of additives on gelation and tissue adhesion of gelatin —poly(L-glutamic acid),. Biomaterials 19, 2167-2173. Ontni, Y., Tabata, Y., Ikada, Y., 1998. Hemostatic capability of rapidly curable from gelatin, poly(L-gllutamic acid), and carbodiimide. Biomaterials 19, 2091-2098. Perez-Camero, G.,Congregado, F.,Bou, J. J.,Munoz-Cuerra, S., 1999. Biosynthesis and Ultrsonic degradation bacterial poly(γ-glutamic acid). Biotechnol. Bioengin. 63, 110-115 Prapulla, S. G., S. Jacob, N. Chand, D. Rajalakshmi, and N. G. Karanth, 1992, Maximization of lipid production by Rhodotroula gracilis CFR-A using response surface methodology. Biotechnology Bioengineering., 40;965-969 Sakai, K., Sonoda, C.,Murase, K., 2000. Bitterness reliving agent. JP Patent WO0021390. Sawamura, S., 1913. On Bacillus natto. J. Coll. Agric. Tokyo 5, 189-191. Sekine, T., Nakamura, T., Shimizu, Y., Ueda, H., Matsumoto, K., Takimoto, Y., Kiyotani, T., 200. Anew type of surgical adhesive made form porcine collagen and polyglutamic acid. J.Biomed. Mater.Res., 35, 305-310. Tanimoto, H., Sato, H., Karasawa, M., Iwasaki, K., Oshima, A., Adachi, S., 2000.Feed composition containing poly-γ-glutamic acid. JP Patent WO96353399.

Tanimoto, H.,Sato, H., Kuraishi, C., Kido, K., Seguto, K., 1995 High absorption mineral-containing composition and foods. US patent 5447,732 Thorne, C. B., Gomez, C. G., Blind, G. R.,Housewright, R. D., 1953. Synthesis of glutamic acid and glutamyl polypeptide by Bacillus anthracis.

Ⅲ.Factors affecting peptide production in synthetic liquid media. J. Bacteriol. 65, 472-478. Thorne, C. B., Gomez, C. G.,Noyes, H. E., Housewright, R. D., 1954. Production of glutamyl polypeptide by Bacillus subtilis. J.Bacteriol. 65, 307-315 Troy, F. A., 1973. Chemistry and biosynthesis of the poly(γ-D-glutamyl) capsule in Bacillus licheniformis .1.Properties of the membrane-mediated biosynthetic reaction. J. Biol.

Chem.248, 305-316. Troy, F. A., 1982. Chemistry and biosynthesis of poly(γ-D-glutamyl) capsule in Bacillus licheniformis.In;Kleinkauf, H.,Von D?hren, H. Peptide Antibiotics; Biosynthesis and Functioons. Walter de Gruyteerr, New York, pp. 49-83. Yamanaka, S., 1991.. New

gamma-polyglutamic acid, production therefore and drinking agent contamining the same. JP Patent 3047087

參考文獻

相關文件

Mannocarolose, β-glucan, Amino acid nitrogen, Crude protein, Crude ash and

• The order of nucleotides on a nucleic acid chain specifies the order of amino acids in the primary protein structure. • A sequence of three

S3: And the products were the lipase fatty acid…no, no, fatty acid and glycerol and the enzyme remained unchanged. S1: Our enzyme was amylase and our substrate

The accuracy of a linear relationship is also explored, and the results in this article examine the effect of test characteristics (e.g., item locations and discrimination) and

A subgroup N which is open in the norm topology by Theorem 3.1.3 is a group of norms N L/K L ∗ of a finite abelian extension L/K.. Then N is open in the norm topology if and only if

gross profit margin, net profit margin, return on capital employed, working capital, current ratio and acid test ratio.. Use accounting ratios to evaluate a company’s profitability

In the citric acid cycle, how many molecules of FADH are produced per molecule of glucose.. 111; moderate;

This database includes antigen’s PDB_ID, all sites (include interaction and non-interaction) of a nine amino acid sequence of primary structure and secondary structure.. After