• 沒有找到結果。

Purification and Characterization of Chitinase and Protease from a Bacteria Strain TKU008 張旻璇、顏裕鴻 ; 王三郎

N/A
N/A
Protected

Academic year: 2022

Share "Purification and Characterization of Chitinase and Protease from a Bacteria Strain TKU008 張旻璇、顏裕鴻 ; 王三郎"

Copied!
4
0
0

加載中.... (立即查看全文)

全文

(1)

Purification and Characterization of Chitinase and Protease from a Bacteria Strain TKU008 張旻璇、顏裕鴻 ; 王三郎

E-mail: 9511323@mail.dyu.edu.tw

ABSTRACT

The purpose of this study is to isolate an indigenous microorganism to degrade Shrimp and Crab shell Powder (SCSP) chitin and to secrete extracellular protease and chitinase. To found the optimal condition for protease and chitinase production. Extracellular proteins were purified by ammonium sulfate precipitation, dialysis to remove salts , ionic exchange of DEAE-sepharose CL-6B and sephadex S-100 gel filtration . The molecular mass of TKU008 protease and chitinase was determined by SDS-PAGE and gel filtration was 40 kDa and 57 kDa , approximately . Bacterium TKU 008 was isolated from soil of southern of Taiwan. Shrimp and Crab shell Powder was used to be the carbon souse of TKU008. The optimized culture condition for protease and chitinase production was found when culture was shaken in 100 mL of medium(pH6)at 30°? containing : 1 % SCSP, 0.1 % K2HPO4 , 0.05 % MgSO4.7H2O . The highest yield of protease and chitinase was produced under the optimum culture condition. The optimum pH, optimum temperature, pH stability and thermal stability of protease were pH 7, 50°?, pH 6 and 30°? . The optimum pH, optimum temperature, pH stability and thermal stability of chitinase were pH 6, 50°?, pH 7 and 30~40°? . After the purification, the yield, fold and specific activity of protease are 1%, 2-fold and 0.36 U/mL and the yield, fold and specific activity of chitinase are 50%,134-fold and 7.56 U/mL by purification procedures. The protease was characterized as a metalloprotease , due to it was inactivated by EDTA. Both of protease and chitinase activities were inhibited by Cu2+、Mn2+ . When enzymes were treated of various surfsctants , either protease or chitinase activity were stable. The effect of organic solvents on protease and

chitinase activity were also explored. The remaining activity of TKU008 protease was 90 % after keeping it at 25°? and 4°? for 10 days. Enzyme had different specific proteolytic activity with casein 、elastin、human albumin、hemoglobin as the substrates.

Keywords : chitin ; protease ; chitinase ; shrimp and crab shall power Table of Contents

頁次 封面內頁 簽名頁 授權書iii 中文摘要 iv 英文摘要 vi 誌謝viii 目錄ix 圖目錄xii 表目錄xiv 第一章 緒言 1 第二章 文獻回顧 3 2.1幾丁質與幾丁聚醣 3 2.1.1 幾丁質與幾丁聚醣的發現 3 2.1.2 幾丁質與幾丁聚醣之化學構造與特性 3 2.1.3 幾丁質與幾丁 聚醣之製備 5 2.1.4 幾丁質與幾丁聚醣之應用 6 2.2蛋白? 13 2.2.1 蛋白?﹞岑略 13 2.2.2 蛋白?﹞坐擭?抩睇P其命名 13 2.2.3 蛋 白?﹞妖S性 15 2.2.4 蛋白質之應用 18 2.3 幾丁質? 23 2.3.1 幾丁質? 略 23 2.3.2 幾丁質?﹞擭 23 2.3.3 幾丁質?〞漱捄M分布 25 2.3.4 幾丁質?★鼢X丁質之水解 27 2.3.5 幾丁質?﹞尾野 27 第三章 材料與方法 32 3.1儀器與藥品 32 3.1.1 儀器 32 3.1.2 藥 品 32 3.2菌株 34 3.2.1 生產菌株之篩選與分離 34 3.2.2 菌株鑑定 35 3.3實驗方法 35 3.3.1懸浮態幾丁質(Colloidal chitin)之製備 35 3.3.2 蛋白質?′〝吨妥?w 35 3.3.3 幾丁質?′〝妠?w 36 3.3.4 蛋白質定量 37 3.4 蛋白?◆P幾丁質?☆?A生長條件探討 38 3.4.1 最適培養基組成之研究 38 3.4.2 最適培養條件的探討 39 3.4.3 酵素之生化特性分析 39 3.5 蛋白?◆P幾丁質之純化分離 40 3.5.1 層析膠體之前處理 40 3.5.2 酵素純化分離 41 3.5.3 純化酵素之生化特性分析 44 第四章 結果與討論 47 4.1菌株之篩 選 47 4.2菌種鑑定 47 4.3最適培養基組成之研究 47 4.3.1碳源的選擇 48 4.3.2蝦蟹殼粉含量對酵素產量之影響 48 4.4蛋白?◆P 幾丁質?☆?A生產條件探討 48 4.5粗酵素之生化特性分析 50 4.6蛋白?◆P幾丁質?﹞妖瞻 擢 61 4.6.1 粗酵素液製備 61 4.6.2 離子交換樹脂層析法 61 4.6.3 膠體過濾層析 64 4.6.4 綜合結果 64 4.6.5 SDS-PAGE 64 4.7純化酵素之生化特性分析 65 第五 章 結論 90 參考文獻 92 附錄ㄧ 製備SDS-PAGE相關藥品配法 103 圖 目 錄 頁次 圖2.1 幾丁質之化學構造 7 圖2.2 纖維素、

幾丁質與幾丁聚糖的構造 8 圖2.3 幾丁質製備流程 9 圖2.4 幾丁質進行生物轉化為單細胞蛋白之程序 31 圖4.1 不同來源之碳 源對蛋白?﹞帤X丁質?〃ㄥq的影響 52 圖4.2 蝦蟹殼粉添加對蛋白?﹞帤X丁質?〃ㄥq之影響 53 圖4.3 培養天數對酵素產量之 影響 54 圖4.4 溫度對蛋白?﹞帤X丁質?★鼤ㄥq之影響 55 圖4.5 pH對酵素產量之影響 56 圖4.6 通氣量對酵素產量之影響 57 圖4.7 TKU008所產蛋白?﹞帤X丁質?﹞坏耵囍掃u 58 圖4.8 粗酵素蛋白?◆P幾丁質?﹞妊抩A反應溫度 59 圖4.9 粗酵素蛋白?

◆P幾丁質?﹞妊抩A反應pH值 60 圖4.10 TKU008所生產蛋白?◆P幾丁質?﹞妖瞻 擢鰿y程圖 62 圖4.11 蛋白?◆P幾丁質?﹞

伶EAE-Sepharose CL-6B層析圖譜 63 圖4.12 蛋白質?◆P幾丁質?﹞刨ephacryl S-100層析圖譜 67 圖4.13 SDS-PAGE檢

測TKU008所產蛋白?◆P幾丁質?○J白質帶 70 圖4.14 SDS-PAGE 分子量與相對移動速率之關係 71 圖4.15 TKU008蛋白?◆P 幾丁質?﹞妊抩A反應溫度 72 圖4.16 TKU008蛋白?◆P幾丁質?﹞妊抩A反應pH值 73 圖4.17 TKU008蛋白?◆P幾丁質?﹞尬 鬖w定性 74 圖4.18 TKU008蛋白?◆P幾丁質?﹞吠H安定性 76 圖4.19有機溶劑對酵素活性之影響 82 圖4.20蛋白?’b有機溶 劑中儲存安定性 83 圖4.21幾丁質?’b中有機溶劑儲存安定性 84 圖4.22 TKU008蛋白?﹞妊抩A反應基質濃度 86 圖4.23 TKU008幾丁質?﹞妊抩A反應基質濃度 87 圖4.24蛋白?‥ineweaver-Burk雙倒數作圖之Km與Vmax 88 圖4.25幾丁質?

(2)

‥ineweaver-Burk雙倒數作圖之Km與Vmax 89 表 目 錄 頁次 表2.1製備不同去乙醯度之幾丁聚醣所需鹼液濃度及溫度 10 表2.2幾丁質及幾丁聚醣之特性與應用 11 表2.3不同來源的蛋白?﹞巹S性 17 表2.4不同微生物所產金屬型蛋白?﹞坐騆 20 表2.5蛋白?’b工業上的應用 21 表2.6不同微生物所產幾丁質?﹞坐騆 30 表4.1 TKU008蛋白?﹞妖瞻 妣n 68 表4.2 TKU008 幾丁質?﹞妖瞻 妣n 69 表4.3 數種化學物質對蛋白?◆P幾丁質?′〝吨尬v響 77 表4.4 界面活性劑對蛋?◆P幾丁質?′〝吨 尬v響 78 表4.5 TKU008所生產蛋白?﹞妍羷霂S異性 79

REFERENCES

中文部份 1.王三郎。1996。水產資源利用學。高立圖書出版社。 2.王三郎。1999。海洋未利用生物資源之回收再利用-幾丁質及幾丁聚 醣。生物資源 生物技術。1: 1-8。 3.王美人,游若荻。1995。篩選枯草桿菌之DNA轉型株用於蛋白?﹞坏芠ㄐC食品科學。22: 38-45。 4.

王偉、秦汶。1989。脫乙醯甲殼素的超聲波降解。化學通報9: 44-52。 5.火田 野功太。1992。幾丁質、脫乙醯幾丁質與幾丁質水解?’b 日本之研究發展現況。生物產業。3: 157-167。 6.徐世昌。2001。生物高分子-幾丁質與幾丁聚醣之介紹與應用。化工資訊月刊。15:

36-45。 7.莊榮輝 主編。2005。酵素化學實驗。第112-157頁。國立台灣大學。台北,台灣。 8.陳國誠。1989。微生物酵素工程學。藝軒 圖書出版社。台北, 台灣。 9.張珍田。2001。幾丁質?﹞帤X丁聚醣?﹞妞膍s。生命科學簡訊14: 3-7。 10.劉瓊淑,幾丁質、幾丁聚醣及 其相關酵素之特性與應用。 1994。食品工業,第26-35頁。 11.蘇遠志,黃世佑。2002。微生物化學工程學。第372-374頁。華香園出版 社。台北,台灣。 12.賴威安。2000。Bacillus sp. P-6蛋白?〞漸芠ㄓ峏宒銴尷R。第18-19、87頁。國立中興大學食品科學系碩士論文。台 中,台灣。 13.蕭瑞昌。1997。利用水溶液性幾丁聚醣以薄膜超過濾法去除微量之金屬離子。私立元智工學院碩士論文。桃園。 英文部 份 1.Alder-Nissen, J. 1986. Enzymic hydrolysis of food proteins. Elsevier applied science publ. 19-20. London and New york. 2.Allan, C. R. and Hadwiger, L. A. 1979. The fungicidal effect of chitsan on fungi of verying cell well composition. Exp. mycol.. 3: 285-298. 3.Akuzawa, R., Tottori, A., Tsukahara, K. and Okitani, A. 1997. Purification and characterization of a cysteine proteinase from Lactococcus lactis ssp. lactis IAM 1198 . Intl. Dairy J. 7: 429-434. 4.Amoozegar, M. A., Fatemi, A. Z., Hamid Reza Karbalaei-Heidari, H. R. and Razavi, M. R. 2006. Production of an extracellular alkaline metalloprotease from a newly isolated, moderately halophile, Salinivibrio sp. strain AF-2004. Microbiological Research.

5.Arora, N., Ahmad, T., Rajagopal, R. and Bhatnagar, R. K. 2003. A constitutively expressed 36 kDa exochitinase from Bacillus thuringiensis HD-1. Biochem. biophys. res. commun. 307: 620–625. 6.Austm, P. R. ,Brme, C. J., Castie, J.E. and Eikakis, J. P. 1981. “Chitin”. New Facets of research Science. 212: 749. 7.Beg, Q. K. and Gupta R., 2003. Purification and characterization of an oxidation-stable, thiol-dependent serine alkaline protease from Bacillus mojavensis. Enzyme microb. technol. 32: 294-304 8.Bersanetti, P. A., Park, H. Y., Bae, K. S., Son, K. H., Shin, D.

H., Hirata, I. Y., Juliano, M. A., Carmona, A. K. and Juliano, L. 2005. Caracterization of arazyme,an exocellular matelloprotease isolated from Serratia proteamaculans culture medium. Enzyme microb. technol. 37: 574–581 9.Benito, M. J., Rodr?櫂uez, M., N??狑z, F., Asensio, M. A., Berm?攔ez, M. E. and C?櫓doba, J. J. 2002. Purification and Characterization of an Extracellular Protease from Penicillium chrysogenum Pg222 Active against Meat Proteins. Appl. environ. microbiol.. 68: 3532–3536. 10.Blaiseau, P. L. and Lafay, J. F. 1992. Primary structure of a chitinase- encoding gene(chi 1)from the filamentous fungs Aphanocladium album: similarity to bacterial chitinase. Gene. 120: 243-248. 11.Bradford , M.

1976. A rapid and sensitine method for the determination of microgram quantities of protein unilizing the principles of protein-day binding. Anal.

biochem. 72: 248-254. 12.Carroad, D. A. and Tom, R. A. 1978. Bioconversion of shellfish chitin waste : process conception and selection of microorganism. J. Food Sci. 43: 1158-1164. 13.Chen, T. E., Huang, D. J., Lin, Y. H. 2004. Isolation and characterization of a serine protease from the storage roots of sweet potato (Ipomoea batatas [L.] Lam). Plant Science. 166: 1019–1026. 14.Cosio, I. G. , Fisher, R. A. and Carroad , D. A.

1982. Bioconver -sion of shellfish chitin waste: waste pretreatment ,enzyme production, process design, and economic analysis. J . Food Sci. 47:

901-905. 15.Cowan, D., 1996. Industrial enzyme technology. Trends Biotechnol. 14: 177–178. 16.Elpidina, E.N., Tsybina, T.A., Dunaevsky, Y.E., Belozersky, M.A., Zhuzhikov, D.P. and Oppert. B. 2005. A chymotrypsin-like proteinase from the midgut of Tenebrio molitor larvae.

Biochimie. 87: 771–779. 17.Fan, Z., Zhu, Q., Dai, J. 2001. Enzymatictreatment of wool. J. Dong Hua University (English edition). 18: 112–115.

18.Fich J, Pilet PE, Jolles P. 1992. What’s new in chitinase research? Experientia. 48: 701-716. 19.Godfrey, T. 1986. Comparison of key

characteristics of industrial enzyme by type and source. In: Industrial Enzymology. 466-557. (ed. T. Godfrey and J. Reichelt). Macmillan Publishers Ltd, New York. 20.Graham, D.E. and M.C. Phillips. 1979. Proteins at liquid interfaces. I. Kinetics of adsorption and surface denaturation. J.

colloid interface sci. 70: 403-414. 21.Gunda, P. and Ralf, Malessa. 1998. Structural characterization of the pressure-denatured state and

unfolding/refolding kinetics of staphylococcal nuclease by synchrotron small-angle x-ray scattering and fourier-transform infrared spectroscopy. J.

Mol. Biol. 275: 389-402. 22.Gupta, A., Roy, I., Khare, S. K., Gupta, M. N. 2005. Purification and characterization of a solvent stable protease from Pseudomonas aeruginosa PseA. J.Chromatogr. A. 1069: 155–161. 23.Gupta, M. N. 1992. Enzyme function in organic solvents. Eur. J.

Biochem. 203: 25–32. 24.Hackman, R. H. 1960. Studies on chitin. IV. The occurrence of complexes in which chitin and protein are covalently limked. Aust. J. Biol. Sci. 13: 568-579. 25.Hirano, S., Yamamoto, T., Hayashi, M., Nishida, T. and Inui, H. 1990. Chitinase activity in seeds coated with chitosan devates. Agric. Biol. Chem. 54: 2719-2720. 26.Imoto, T. and Yagishita, K. 1971. A simple activity measurement by lysozyme. Agric.

Biol. Chem. 35: 1154–1156. 27.Jeuniax,C. 1964. Free chitin and masked chitin in invertebrate skeletal structures. Arch. Int. Physiol. Biochem. 72:

329-330. 28.Joo, H. E., Kumar, C. G., Park, G. C., Kim, K. T. and Paik, S. R. 2002. Optimization of the production of an extracellular alkaline protease from Bacillus horikoshii. Process Biochem. 38: 155-159. 29.Karadzic, I., Masui, A. and Fujiwara, N. 2004. Purification and

Characterization of a Protease from Pseudomonas aeruginosa Grown in Cutting Oil. J. Biosci. Bioeng. 98: 145-152. 30.Kawasumi, T., Kiuchi, N.,

(3)

Futatsugi, Y., Ohba, K. & Yanagi, S. O. 1987. High yield preparation of Lentinus edodes (”Shiitake”) protoplastswith regeneration capacity and mating type stability. Agric. Biol. Chem. 51: 1649-1656. 31.Kelkar, H. S., Shankar, V. & Deshpande, M. V. 1990. Rapid isolation andregeneration of Sclerotium rolfsii protoplasts and their potential application for starch hydrolysis. Enzyme Microb. Technoogyl. 12: 510-514. 32.Khan, A., Williams, K., Molloy, M. P. and Nevalainen, H. 2003. Purification and characterization of a serine protease and chitinases from Paecilomyces lilacinus and detection of chitinase activity on 2D gels. Protein expr. purif. 32: 210–220. 33.Kim, H. K., Kim, G. T., Kim, D. K., Chio,W. A., Park, S. H., Jeong, Y. K. and Kong, I. S. 1997. Purification and Characterization of a Novel Fibrinolytic Enzyme from Bacillus sp. KA38 Originated from Fermented Fish. J. of Fermentation and bioengineering. 84: 307-312. 34.Koga, D., Sueshige, N., Orikono, K., Utsumi, T., Tanaka, S., Yamada, Y., and Ide, A. 1988. Efficiency of chitinolytic enzyme in the formation of tricoderma matsutake protoplasts. Agric. Boil.

Chem., 52: 2091-2094. 35.Koga, D., Sueshige, N., Usumi, T. and Ide, A. 1989. Kinetics of chitinase from yam , Dioscorea oppsita thumb. Agric.

Biol. Chem., 53: 3121-3127. 36.Knorr, D. 1984. Use of chitinous polymers in food. Food-A challenge for food research and development. Food Technol. 38: 85-97. 37.Kurtovic, I., S.N. Marshall, S.N. and Simpson, B. K. 2006. Isolation and characterization of a trypsin fraction from the pyloric ceca of chinook salmon (Oncorhynchus tshawytscha). Comp. biochem. physiol., Part B. 143: 432–440. 38.Kunz, C., Sellam, O. and Bertheau, Y. 1992. Purification and characterization of a chitinase from the hyperparasitic fungus Aphanocladium album. Physiol. mol. plant pathol. 40: 117- 131. 39.Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of thehead of bacteriophage T4. Nature . 227:

680–685. 40.Lahl, W. J. and Braun, S. D. 1994. Enzymatic production of protein hydrolysates for food use. Food Technol. 48: 68-71. 41.Lee, J.

H., Ahn, S.H., Lee, E. M., Young-Ok Kim, Y. O., Lee, S. J. and Kong, I. S. 2003. Characterization of the enzyme activity of an extracellular metalloprotease (VMC) from Vibrio mimicus and its C-terminal deletions. FEMS micro. biol. lett. 223: 293-300. 42.Leger, R.J. ST., Cooper, R.M.

and Charnley, A. K. 1991. Characterization of Chitinase and Chitobiase Produced by the Entomopathogenic Fungus Metarhizium anisopliae. J.

invertebr. pathol.. 58: 415-426. 43.Lilik, I. and David, A. M., 1996 .Leaching and characterization of Rhizopus oligosporus acid protease from solid-state formation, enzyme Microb Teachnol. 19: 175-177. 44.Margesin, R., Dieplinger, H., Hofmann,J., Sarg, B. and Lindner, H. 2005. A cold-active extracellular metalloprotease from Pedobacter cryoconitis—production and properties. Research in Microbiology. 156: 499–505.

45.Martinou, A., Koutsioulis, D. and Bouriotis, V. 2002. Expression, Purification, and Characterization of a Cobalt-Activated Chitin Deacetylase (Cda2p) from Saccharomyces cerevisiae. Protein expr. purif. 24: 111–116. 46.Matta, H. and Punj, V. 1998. Isolation and partial characterization of a thermostable extracellular protease of Bacillus polymyxa B-17. Int. j. food microbiol. 42: 139-145. 47.Melchers, L. S., Apotheker-de Groot, M., Ven der Knaap, J. A., Ponstein, A. S., Sela-Buurlage, M. B., Bol, J. F., Cornelissen, B. J. C. Vanden Elzen, P. J. M., Linthorst, H. J. M. 1994.

Anew class of tobacco chitinases homologous to bacterial exo-chitinases displays antifungal activity. Plate J. 5: 469-480. 48.Minke, R. and Blackwell, J. 1978. The structure of α-chitin. J. Mol. Biol. 120: 167-181. 49.Mozersky, S., Marmer, W., Dale, A.O. 2002. Vigorous proteolysis:

Relining in the presence of an alkaline protease and bating (Post -Liming) with an extremophile protease. JALCA. 97: 150-155. 50.Murao, S., Kawada, T., Itoh, H., Oyama, H. and Shin, T. 1992 Purification and characterization of a novel type of chitinase from Vibrio alginolyticus TK-22.

Biosci. Biotech. Biochem. 56: 368-369. 51.Muzzarelli, R. A. A., G. and Roccheti, R. 1978. Isolation of lysozyme on chitsan. Biotech. Bioeng. 20:

87-95. 52.Nanjo, F., Ishikawa, M., Katsumi, R. and Sakai, K. 1989. Purification, properties and transglycosylation reation of

b-N-acetyl-hexosaminidase from Nocardia orientalis. Agric. Biol. Chem. 54: 899-906. 53.Nakamura T, Syukunobe Y, Sakarai T and Idota T. 1993 Enzymatic production of hypoallergenic peptides from casein. Milchwissenschaft. 48: 11-14. 54.Nduwimana, j., Guenet, L., Dorval, I., Blayau, M., Gall, J. L.and Treut, A. L. 1995. Proteases. Ann. Biol. Clin. 53: 251-264. 55.Ogino, H., Yasui, K., Shiotani , T., Ishihara, T. and Ishikawa, T.

1995. Organic solvent-tolerant bacterium which secretes an organic solvent-stable proteolytic enzyme. Appl Environ Microbiol. 61: 4258-4262.

56.Okazaki, K. and Tagawa, K. 1991. Purification and Properties of Chitinase from Streptomyces cinereoruber. J. of Fermentation and

Bioengineering. 71: 237-241. 57.Ordentlich, A., Elad, Y. and Chet, I. 1988. The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii. Phyto -pathol. 78: 84-87. 58.Preacott, M., Peek, K. and Daniel, R. M. 1995. Characterisation of a thermostable pepstatin-insenstivite acid protease from a Bacillus sp. Int. J. Biochem. Cell Biol. 27: 729-739. 59.Rao, M., Tankasale, A., Ghatge, M., Desphande, V. 1998. Mole -cularand biotechnological aspects of microbial proteases. Micro -biol. Mol. Biol. Rev. 62: 597–634. 60.Robert A. C. 1994. Methods for protein analysis. A practical guide to laboratory protocols. Chapman andd Hall Publishing Co. New York. U.S.A. 61.Schokker, E. P., van Boekel, M. A. J. S.

Production, purification and partial characterization of the extracellular proteinase from Pseudomonas fluorescens 22F. Int. Dairy J. 7:165–171.

62.Secades, P., Alvarez, B. and Guijarro, J. A. 2003. Purification and properties of a new psychrophilic metalloprotease(Fpp2) in the fish pathogen Flavobacterium psychrophilum. FEMS micro. biol. lett.. 226: 273-279. 63.Seong, C. N., Jo, J. S., Choi1, S. K., Kim, S. W., Kim, S. J., Lee, O. H., Han, J. M. and Yoo,J. C. 2004. Production, purification, and characterization of a novel thermostable serine protease from soil isolate,

Streptomyces tendae. Biotechnol. lett. 26: 907–909. 64.Shahabuddin, M. and Kaslow, D. C. 1993. Chitinase: a Novel Target for Blocking Parasite Transmission? Parasitol. today. 9: 252-255. 65.Shapira, R., Ordentlich, A., Chet, I. and Oppenhiem, A. B. 1989. Control of plant disease by chitinase expressed from cloned DNA in Escherichia coli. Phytopathol. 79: 1246-1249. 66.Sierecka, J. K. 1998. Purircation and partial characterization of a neutral protease from a virulent strain of Bacillus cereus . Int. J. Biochem.Cell Biol. 30: 579-595. 67.Singh, L. R., Devi, T. P.

and Devi, S.K. 2004. Purification and characterization of a pineapple crown leaf thiol protease. Prep. biochem. biotechnol.. Feb. 34: 25-43.

68.Skujins, J. J., Potgieter, H. J. & Alexander, M. 1965. Dissolution of fungal cell walls by Streptomyces chitinase and ??1,3-glucanase. Arch.

Biochem. Biophy. 111: 358-364. 69.Sormorin, O. and Nishi. 1979. Studies on chitin preparation of benzyl and benzyl chitins. Polym. J. 2: 391-498.

70.Souza, R.F., Gomes, R.C., Coelho, R.R.R., Alviano, C.S., Soares, R.M.A. 2003. Purification and characterization of an endochitinase

(4)

produced by Colletotrichum gloeosporioides. FEMS micro. biol. lett. 222: 45-50. 71.Takaya, N., Yamazaki, D., Horiuchi, H., Ohta, A. and Takagi, M. 1998. Intracellular chitinase gene from Rhizopus oligosporus: molecular cloning and characterization. Microbiology. 144: 2647–2654.

72.Tanabe, T., Kawase, T., Watanabe, T., Uchida, Y. and Mitsutomi, M. 2000. Purification and Characterization of a 49-kDa Chitinase from Streptomyces griseus HUT 6037. J. of Bioscience and Bioengineering. 89: 27-32. 73.Taylor, M.M., Bailey. D.G. and Feairheller, S.H. 1987. A review of the use of enzymes in the tannery. J. Am Leather Chem. Assoc. 82: 153-165. 74.Tikhonov, V. E., Radigina, L. A., Yamskov, I. A., Gulyaeva, N. D., Ilyina, A. V., Anlsimova, M. V., Varlamov, V. P. and Tatarinova, N. Y. 1998. Affinity purification of major chitinases produced by Streptomyces kurssanovii. Enzyme microb. technol. 22: 82-85. 75.Todd, E.W. 1949. Quantitative studies on the total plasmin and trypsin inhibitor ofhuman blood serum. J. Exp. Med. 39: 295–308. 76.Toma, C., Ichinose, Y. and Masaaki Iwanag, M. 1999. Purification and characterization of an Aeromonas caviae metalloprotease that is related to the Vibrio cholerae hemagglutinin/protease. FEMS micro. biol. lett.

170: 237-242. 77.Tsutomu, T., Kasumi, A., Yasuyaki, T. and Venzo, S. 1991. Isolation and characterization of thermostable chitinase from Bacillus licheniformis. Biochim. Biophys. Acta. 1078: 404-411. 78.Usui, T., Hayashi, Y., Nanjo, F., Sakai, K. and Ishido, Y. 1987.

Transglycoylation reaction of chitinase purified from Nocardio orientalis. Biochim. Biophys. Acta. 9923: 302-309. 79.Venter, H., Osthoff, G., and Litthauer D. 1999, Purification and Characterization of a Metalloprotease from Chryseobacterium indologenes Ix9a and Determination of the Amino Acid Specificity with Electrospray Mass Spectrometry. Protein expr. purif.. 15: 282–295. 80.Vicente, J. I. D., Arriaga, D. D., Valle, P. D., Soler, J. and Eslava, A. P. 1996. Purification and Characterization of an Extracellular Aspartate Protease from Phycomyces blakesleeanus. Fungal genet. biol. 20: 115–124. 81.Venter, H., Osthoff, G. and Litthauer, D. 1999. Purification and Characterization of a Metalloprotease from Chryseobacterium indologenes Ix9a and Determination of the Amino Acid Specificity with Electrospray Mass Spectrometry. Protein expr. purif..

15: 282–295. 82.Wang, S. L., Chen, Y. H., wang, C. L., Yen, Y. H. and chern, M. K. 2005. Purification and characterization of a serine protease extracellularly produced by Aspergillus fumigatus in a shrimp and crab shell powder medium. Enzyme Microl. Technol. 36: 660-665. 83.Wang, S.

L. and Chio, S. H. 1998. Deproteinization of shrimp and crab shell with the protease of Pseudomonas aeruginosa K-187. Enzyme Microl. Technol.

22: 629-633. 84.Wang, S. L., Kao, T. Y., Wang, C. L., Yen, Y. H., Chern, M. K. and Chen, Y. H. 2006. A solvent stable metalloprotease produced by Bacillus sp. TKU004 and its application in the deproteinization of squid pen for β-chitin preparation. Enzyme Microl. Technol.

85.Yasuda, M., Aoyama, M., Sakaguchi, M., Nakachi, K. and Kobamoto, N. 1999. Purification and characterization of a

soybean-milk-coagulating enzyme from Bacillus pumilus TYO-67. Appl. microbiol. biotechnol. 51: 474–479. 86.You, M., Xuan, X., Tsuji, N., Kamio, T., Taylor, D., Suzuki, N. and Fujisaki, K. 2003. Identification and Molecular Characterization of a Chitinase from the Hard Tick Haemaphysalis longicornis. J. biol. chem. 278: 8556–8563 87.Yuli, P.E., Suhartono, M. T., Rukayadi, Y., Hwang, J. K. and Pyunb, Y. R. 2004.

Characteristics of thermostable chitinase enzymes from the indonesian Bacillus sp.13.26. Enzyme Microl. Technol. 35: 147–153. 88.Zhang, Y., Bak, D.D., Heid, H. and Geider, K. 1999. Molecular characterization of a protease secreted by Erwinia amylovora. J. Mol. Biol. 289: 1239-1251.

參考文獻

相關文件

• To enhance teachers’ knowledge and understanding about the learning and teaching of grammar in context through the use of various e-learning resources in the primary

3.16 Career-oriented studies provide courses alongside other school subjects and learning experiences in the senior secondary curriculum. They have been included in the

1.4 For education of students with SEN, EMB has held a series of consultative meetings with schools, teachers, parents and professional bodies to solicit feedback on

dimensional nanomaterials for photodetectors with ultrahigh gain and wide spectral response. II.  Photon down conversion and light trapping in hybrid ZnS nanopartcles/Si

本研究採用三種判斷準則來比較 Nelson-Siegel Model、Extend Nelson-Siegel Model 與 Nelson-Siegel-Svensson Model 的配適能力,配適結果如表 4 表示,其中

Income is generated from wages and salaries, interest, rent and profits. In a labour-intensive industry such as tourism, a large part of income comes from wages and salaries earned

www.edb.gov.hk> School Administration and Management> Financial Management > Notes to School Finance> References on Acceptance of Advantages and Donations by Schools

Type case as pattern matching on values Type safe dynamic value (existential types).. How can we