• 沒有找到結果。

奈米碳管之改質與應用性研究

N/A
N/A
Protected

Academic year: 2021

Share "奈米碳管之改質與應用性研究"

Copied!
59
0
0

加載中.... (立即查看全文)

全文

(1)

奈米碳管之改質與應用性研究

謝永堂

(2)

奈米碳管

奈米碳管

(

(

CNTs

CNTs

)

)

簡介

簡介

奈米碳管之性質與應用

奈米碳管之性質與應用

奈米碳管之製造

奈米碳管之製造

部份研究成果

部份研究成果

(3)

什麼是奈米?

(m) 毫米 (mm) 100m10m 人高 細沙 微生 頭髮 高分 糖分 DNA 氫原 微米 1m 100nm 10nm 奈米nm 0.1nm

奈米:尺寸的單位,十億分之一米(10

-9

m, nanometer, nm)

(4)

Diamond

Graphite

Fullerene, C60

(1985, Curl, Kroto, Smalley)

Carbon nanotubes (CNTs)

(1991, Iijima, NEC)

(5)

Prof. Richard E. Smalley (1943-2005)

Rice University

(6)

Prof. Sumio Iijima (1939年生)

日本名城大學教授

(7)
(8)
(9)
(10)
(11)

性質

高機械強度 :

高長徑比 :

高熱傳導性 :

高導電性 :

應用

CNTs composites

Field emission display

Hydrogen storage

Sensors and probes

(12)

A CNT field emission electron source

(13)

Electron Field Emission Characteristics of

Typical Emissive Materials

Cathode material Threshold field (V/m)

for a current density of 10 mA/cm2

Mo tips 50-100 Si tips 50-100 p-type diamond 160 defective CVD diamond 30-120 amorphous diamond 20-40 cesium-coated diamond 20-30 graphite powders 10-20

nano-diamond 3-5 (unstable >30 mA/cm2)

CNTs (random SWNT film) 1-3 (stable >1 A/cm2)

(14)

(CO2, 800 C 5~10% cap opening)

CNT end cap opening

Thinning and cap opening of CNTs by oxidation using CO

2

(15)

1. CO2, 800 C, 5~10% cap opening

(Tsang, Harris, and Green, Nature, 1993, 362, 520.)

CNT end cap opening

2. Air, 800 C, ~20% cap opening

(Ajayan, etc., Nature, 1993, 362, 522)

3. Conc. HNO3, 140 C, 4.5 hr, ~80% cap opening

(Tsang, Chen, Harris, Green, Nature, 1994, 372, 159.)

4. Oxidants giving various degrees of cap opening (Hwang, etc., Chem. Comm., 1995, 173)

(16)

1. K2Cr2O7 10% H2SO4 100 C, 30 min 0 2. H2O2 10% H2SO4 100 C, 30 min 0 3. KMnO4 10% H2SO4 100 C, 30 min 64

100 C, 90 min 90 KMnO4 100 C, 30 min 15 KMnO4 MnO2 100 C, 30 min 59 100 C, 60 min 85 4. KMnO4 CrO3 100 C, 30 min 44 100 C, 90 min 91 5. KMnO4 NaIO4 100 C, 30 min <5 100 C, 90 min 32 6. OsCl3 NaIO4 100 C, 30 min 61 100 C, 60 min 81 7. RuCl3 NaIO4 100 C, 30 min 66 100 C, 60 min 91 100 C, 90 min destroyed

(17)

CNTs 之製造

Arc Discharge

Arc Discharge

電弧放電法

電弧放電法

Laser Ablation

Laser Ablation

雷射剝削法

雷射剝削法

Chemical Vapor Deposition (CVD)

(18)

Graphite

Graphite

Water

Water

Cooler

Cooler

Vacuum

Vacuum

Graphite

Graphite

Inert

Inert

gas

gas

--

Power

Power

: 100 A, 30

: 100 A, 30

-

-

35 V

35 V

-

-

Chamber:

Chamber:

He,

He,

Ar

Ar

, air, vacuum

, air, vacuum

--

Discharge distance <1

Discharge distance <1

mm

mm

-

-

Temperature: 4000 K

Temperature: 4000 K

Electric Arc Discharge

電弧放電法

電弧放電法

Iijima

(19)

Carbon onions produced by the arc method in water

Claims: carbon onions are mostly found floating on the water surface

with high purity and nearly the same sizes (d=25~30 nm)

(20)

Smalley Group, 1996

Smalley Group, 1996

Furnace

Furnace

Laser beam

Laser beam

Water

Water

-

-

cooled

cooled

Cu collector

Cu collector

Graphite

Graphite

Quartz tube

Quartz tube

Temperature: 1200 C (Furnace)

Temperature: 1200 C (Furnace)

He,

He,

Ar

Ar

flow at 550

flow at 550

torr

torr

Particles: Co, Ni

Particles: Co, Ni

(21)

Hydrocarbon

Hydrocarbon

V

V

apor

apor

(

(

碳源

碳源

)

)

Quartz tube

Quartz tube

Catalytic

Catalytic

particles

particles

Furnace

Furnace

CVD

CVD

化學氣相沉積法

化學氣相沉積法

(22)

Nucleation

Nucleation

(1) Pyrolysis

(1)

Pyrolysis

Thickening

Thickening

(2)

(2) Adsorption

Adsorption

(3)

(3) Surface diffusion

Surface diffusion

(4)

(4) Deposition

Deposition

Lengthening

Lengthening

(1)

(1)

(2)

(2)

(3)

(3)

(4)

(4)

C

C

C

C

C

C

Carbon

Carbon

layer

layer

C

C

nn

H

H

mm

H

H

++

H

H

++

C

C

H

H

22

+

+

((C

C

nn

H

H

m--xm x

))

--xx

+

+

C

C

nn

H

H

mm

H

H

++

H

H

++

C

C

H

H

22

+

+

((C

C

nn

H

H

m--xm x

))

--xx

+

+

Nucleation

Nucleation

(1) Pyrolysis

(1)

Pyrolysis

Thickening

Thickening

(2)

(2) Adsorption

Adsorption

(3)

(3) Surface diffusion

Surface diffusion

(4)

(4) Deposition

Deposition

Lengthening

Lengthening

(1)

(1)

(2)

(2)

(3)

(3)

(4)

(4)

C

C

C

C

C

C

Carbon

Carbon

layer

layer

C

C

nn

H

H

mm

H

H

++

H

H

++

C

C

H

H

22

+

+

((C

C

nn

H

H

m--xm x

))

--xx

+

+

C

C

nn

H

H

mm

H

H

++

H

H

++

C

C

H

H

22

+

+

((C

C

nn

H

H

m--xm x

))

--xx

+

+

Nucleation

Nucleation

(1)

(1)

Pyrolysis

Pyrolysis

Thickening

Thickening

(2)

(2)

Adsorption

Adsorption

(3)

(3)

Surface diffusion

Surface diffusion

(4)

(4)

Deposition

Deposition

Lengthening

Lengthening

(1)

(1)

(2)

(2)

(3)

(3)

(4)

(4)

C

C

C

C

C

C

Carbon

Carbon

layer

layer

C

C

nn

H

H

mm

H

H

++

H

H

++

C

C

H

H

22

+

+

(

(

C

C

nn

H

H

mm--xx

)

)

--xx

+

+

C

C

nn

H

H

mm

H

H

++

H

H

++

C

C

H

H

22

+

+

(

(

C

C

nn

H

H

mm--xx

)

)

--xx

+

+

Nucleation

Nucleation

(1)

(1)

Pyrolysis

Pyrolysis

Thickening

Thickening

(2)

(2)

Adsorption

Adsorption

(3)

(3)

Surface diffusion

Surface diffusion

(4)

(4)

Deposition

Deposition

Lengthening

Lengthening

(1)

(1)

(2)

(2)

(3)

(3)

(4)

(4)

C

C

C

C

C

C

Carbon

Carbon

layer

layer

C

C

nn

H

H

mm

H

H

++

H

H

++

C

C

H

H

22

+

+

(

(

C

C

nn

H

H

mm--xx

)

)

--xx

+

+

C

C

nn

H

H

mm

H

H

++

H

H

++

C

C

H

H

22

+

+

(

(

C

C

nn

H

H

mm--xx

)

)

--xx

+

+

成長機構

CVD法成長奈米碳管

(23)

8 m

Synthesis of large arrays of well-aligned CNTs on glass

(Ren, et al., Science, 1998, 282, 1105.)

40 m

(a) SEM images of CNTs aligned perpendicular to the substrate.

(b) Enlarged view of (a).

(24)
(25)

CNTs之製造 in our lab

謝永堂, 劉景隆,「奈米碳管之表面修飾改質及其特性研究」,工程科技通訊, 第82期,第64~68 頁,民國94年。 0.5 20 750 100 樣品5 1 50 750 100 樣品4 1 20 950 100 樣品3 1 20 750 200 樣品2 1 20 750 100 樣品1 時間, hr 乙炔流量, sccm 溫度, ℃ 觸媒, mg 樣品

(26)

Fabrication of CNTs in our lab

catalyst 100 mg, reaction temp 750℃,

C

2

H

2

flow rate 20 sccm, reaction time 1hr

(27)

Influence of C

2

H

2

flow rate

Catalyst 100 mg, reaction temp 750℃, reaction time 1 hr, C2H2 20 sccm

Catalyst 100 mg, reaction temp 750℃, reaction time 1 hr, C2H2 50 sccm

(28)

Catalyst 100 mg, reaction temp 750℃, reaction time 1 hr, C2H2 20 sccm

Catalyst 200 mg, reaction temp 750℃, reaction time 1 hr, C2H2 20 sccm

(29)

Influence of reaction time

Catalyst 100 mg, reaction temp 750℃,

reaction time 1 hr, C2H2 20 sccm

Catalyst 100 mg, reaction temp 750℃,

(30)

Influence of reaction temperature

Catalyst 100 mg, reaction temp 950℃,

reaction time 1 hr, C2H2 20 sccm

Catalyst 100 mg, reaction temp 750℃,

(31)

Catalyst 100 mg, reaction temp 950℃,

reaction time 1 hr, C2H2 20 sccm

Catalyst 100 mg, reaction temp 750℃,

reaction time 1 hr, C2H2 20 sccm

(32)
(33)

catalyst 100 mg, reaction temp 750℃,

C

2

H

2

flow rate 20 sccm, reaction time 1hr

(34)

奈米碳管之改質與奈米碳管複合材料

1.奈米碳管之分散性

2.奈米碳管/高分子複材之界面引力

(35)

奈米碳管之酸處理

1.6 92 25oC x 6 hr 2.5 80 25oC x 12 hr 4.1 65 25oC x 24 hr 6.9 28 60oC x 3 hr 4.3 46 80oC x 1 hr 7.5 22 80oC x 2 hr 8.8 10 80 oC x 3 hr COOH contents (mmol/g) Residues (%) Acid treatment conditions

(36)

TEM images of CNTs after acid treatments at various conditions: (a) control, (b) 80 oCx2 h, (c) 60 oCx3 h, (d) 80 oCx1 h, (e) 25 oCx24 h, and (f) 25 oCx12 h.

(37)

FESEM images of CNTs after acid treatments at various conditions: (a) control; (b) 80 oCx2 h

(low mag); (c) 80 oC x2 h (high mag); (d) 60 oCx3 h (low mag.); (e) 60 oCx3 h (high mag.); (f) 80 oCx1 h (low mag.); (g) 80 oCx1 h (high mag.); (h) 25 oCx24 h (low mag.); (i) 25 oCx24 h (high

(38)

Pictures of the deionized water solutions of 0.05 mg/mL for the as-synthesized CNTs (left) and the treated CNTs at 80 oC for 1 h (middle) and 2 h (right).

(39)

Pictures of acetone solutions of 0.05 mg/mL for the as-synthesized

(40)

Pictures of aqueous solutions of different pH with a conc. of 0.05 mg/mL for (a) the as-synthesized CNTs, and the CNTs treated at 80 oC for (b) 1 h and (c) 2 h.

All pictures were taken 1 month after the solutions had been sonicated for 5 min.

(41)

FESEM images for the sedimentary deposits from the aqueous solutions. The pH values of the aqueous solutions were (A) 0, (B) 4, (C) 7, (D) 10, and (E) 12. Image (F) was for the deposit from aqueous solution of pH 7 containing the untreated CNTs.

(A) (B) (C)

(42)
(43)
(44)

CNTs接枝PMMA (

CNTs-g-PMMA

)

(Shieh, et al, Polymer, 2005, 46, 10945.)

CH

2

C

C

CH

3

O

OCH

3

n

PMMA

(45)

CNTs-g-PMMA

TEM

(46)

PMMA/CNTs-g-PMMA奈米複合材料之SEM圖

(47)
(48)

多層奈米碳管受張力斷裂之演變圖

(49)
(50)
(51)
(52)
(53)

PEO/CNTs-g-PMMA

奈米複合材料

(Left) CNTs-g-PMMA dissolved in chloroform; (right) ungrafted CNTs precipitated in chloroform.

(Shieh, et al, Polymer, 2005, 46, 10945.)

The chloroform cast films: (upper left) pure PEO,

(upper right) PEO/CNTs-g-PMMA 90/10, (lower left) PEO/CNTs-g-PMMA 80/20, (lower right) PEO/CNTs-g-PMMA 70/30.

(54)

PEO/CNTs-g-PMMA奈米複合材料之DMA圖

(55)

PEO/CNTs-g-PMMA奈米複合材料之POM圖

POM images of PEO/CNTs-g-PMMA blends after isothermal crystallizations at 45 C: (A) 100/0, (B) 90/10, (C) 80/20, (D) 70/30.

(56)

CNTs接枝PLLA (CNTs-g-PLLA)

(57)

PLLA/CNTs-g-PLLA奈米複合材料

FESEM image of a cross section of the film of the PLLA/CNTs-g-PLLA 100/5 nanocomposite.

(58)

DSC cooling curves of -5 oC/min from

the melt for PLLA/CNTs-g-PLLA of (A) 100/0, (B) 100/1, (C) 100/2, (D) 100/5, And (E) 100/10.

PLLA/CNTs-g-PLLA奈米複合材料之DSC圖

DSC heating curves of 10 oC/min for

PLLA/CNTs-g-PLLA of (A) 100/0, (B) 100/1, (C) 100/2, (D) 100/5, and (E) 100/10. Before heating, these samples have been cooled at -5 oC/min from the melt.

(59)

Nobel Prize winner in Chemistry for 2002

for the development of methods for identification and

structure analyses of biological macromolecules”

In September 1987, the Second Japan-China Joint Symposium on Mass

Spectrometry was held in Takarazuka, Japan, and … we announced our results in

English for the first time.

Koichi Tanaka, born in 1959,

B. Eng at Tohoku University, Japan.

R&D Engineer at Shimadzu Corp., Kyoto, Japan.

參考文獻

相關文件

// VM command following the label c In the VM language, the program flow abstraction is delivered using three commands:. VM

Multiple images from a sequence tracked with 6DOF SLAM on a client, while a localization server provides the global pose used to overlay the building outlines with transparent

Model checking: residuals can be obtained by 1-step ahead forecast errors at each time point, (observations minus the fitted value) Then if the model is adequate, residuals should

An integrated photovoltaic /thermal (PV/T) air collector to collect hot air and drive air flow, and mixing the air flow from earth-air heat exchanger (EAHE) and hot air flow to

This study, analysis of numerical simulation software Flovent within five transient flow field,explore the different design of large high-temperature thermostat room

The result indicated that the constitutive relationship among the flow stress, deformation temperature, and strain rate for IN 600 during hot deformation satisfied the

and Peterson, G., “Convective Heat Transfer and Flow Friction for Water Flow in Microchannel Structures,” Int. Heat and Mass

C., “Robust and Efficient Algorithm for Optical Flow Computation,” Proceeding of IEEE International Conference on Computer Vision, pp. “Determining Optical Flow.” Artificial