• 沒有找到結果。

利用篩選之Bacillus subtilis DYU6菌株生產凝乳酵素及其特性之研究 王曼瑩、吳建一

N/A
N/A
Protected

Academic year: 2022

Share "利用篩選之Bacillus subtilis DYU6菌株生產凝乳酵素及其特性之研究 王曼瑩、吳建一"

Copied!
6
0
0

加載中.... (立即查看全文)

全文

(1)

利用篩選之Bacillus subtilis DYU6菌株生產凝乳酵素及其特性之研究 王曼瑩、吳建一

E-mail: 345441@mail.dyu.edu.tw

摘 要

凝乳酵素(milk-clotting enzyme, MCE)主要源自動物、植物以及微生物。由於動物性凝乳酵素供不應求,導致價格居高不下

,所以,許多學者便開始研究其它替代性的蛋白?,以取代小牛凝乳酵素。本研究的目的是利用篩選之Bacillus subtilis DYU6菌株生產MCE,並探討其特性。利用搖瓶和5-L發酵槽,探討不同培養條件對B. subtilis DYU6菌株發酵生產MCE的 影響。搖瓶部分,發現最佳碳源為澱粉(20 g/ L),在培養基中添加50mM的NaCl,可得到酵素最佳活性為1,000 SU,最大 的蛋白質水解活性為0.16 U/ mL。在5L發酵槽實驗方面,由實驗結果發現,當培養基pH調控在6、轉速為100 rpm、曝氣 量為0.5 vvm時,可達到最高酵素活性為600 SU。使用(NH4)2SO4沉澱可獲得部分純化的沉澱物。當 (NH4)2SO4飽和度 為50-70%時,由收集到的沉澱物,可測得凝乳酵素活性(milk-clotting activity, MCA)(1,333 SU/ mg)。將收集到的沉澱物再使 用column chromatography (superdexTM grade)進一步地純化,由收集的沖提液中測得MCA為4,176 SU/ mg。研究外在因子(

凝固的溫度、CaCl2濃度、NaCl濃度、pH)對於牛奶凝乳特性的影響。MCA隨著牛奶的pH遞減(從7.5-5.5)而增加。添加如

:Al3+、Zn2+、Fe3+、Fe2+ 金屬離子可以明顯地促進凝乳,而添加Ni2+, Cu2+ 及Na+則會抑制活性。不論粗酵素或是純 化酵素,其酵素活性範圍在pH 5-11,而擁有最佳活性的pH為7。酵素儲存穩定性則是在4℃最穩定,液態或粉末酵素分別 在240天和140天內仍能保留70 %的初始活性。此外,對於B. subtilis DYU6菌體生長可利用Logistic model進行動力學解析,

由結果顯示Logistic model對於菌體生長具有良好的模擬性。

關鍵詞 : 凝乳酵素、純化

目錄

封面內頁 簽名頁 中文摘要 iii 英文摘要 v 誌謝 vi 目錄 viii 圖目錄 xiii 表目錄 xix 1. 緒論 1 1.1 前言 1 1.2 研究動機與目的 6 2.

文獻回顧 7 2.1 酪蛋白之簡介 7 2.2 凝乳酵素之簡介 8 2.2.1 動物性凝乳酵素 9 2.2.2 植物性凝乳酵素 10 2.2.3 微生物性凝乳酵 素 12 2.3 生產凝乳酵素的微生物種類 12 2.3.1 真菌性凝乳酵素 12 2.3.2 細菌性凝乳酵素 14 2.4 環境因子對於生產凝乳酵素 的影響 16 2.4.1 溫度的影響 16 2.4.2 pH的影響 16 2.5 凝乳酵素的生化特性 17 2.5.1 溫度的影響 17 2.5.2 pH的影響 19 2.5.3 鈣離子的影響 20 2.6 凝乳酵素作用機制 21 3. 材料與方法 24 3.1實驗材料 24 3.1.1 材料 24 3.1.2 實驗藥品 25 3.1.3 儀器設備 27 3.2 菌株篩選 29 3.3 凝乳酵素的生產 29 3.3.1 搖瓶生產MCE實驗 29 3.3.2 發酵槽實驗 30 3.4 B. subtilis DYU6凝乳酵素純 化 31 3.4.1 酵素液製備 31 3.4.2 超過濾濃縮裝置 31 3.4.3 硫酸銨沉澱法 33 3.4.4 SuperdexTM grade管柱膠體過濾層析 33 3.5 分析方法 33 3.5.1 凝乳活性分析 33 3.5.2 蛋白質含量分析(Folin-phenol法) 34 3.5.3 蛋白?活性分析 36 3.5.4 凝乳塊強度分析 38 3.5.5 澱粉水解?活性分析 39 3.5.6 澱粉濃度含量分析 40 3.5.7 還原醣定量分析 41 3.6 B. subtilis DYU6凝乳酵素之特性探討 43 3.6.1 pH之影響 43 3.6.2 溫度之影響 43 3.6.3 乳基質濃度之影響 43 3.6.4 NaCl濃度之影響 43 3.6.5 CaCl2濃度之影響 44 3.6.6 金屬離子種類與濃度之影響 44 3.7 B. subtilis DYU6凝乳酵素之穩定性探討 45 3.7.1 酵素pH之影響 45 3.7.2 熱穩定性 45 3.8 儲存穩定性 45 3.9 SDS-Polyacrylamide gel electrophoresis (SDS-PAGE) 46 4. 動力學模式解析 47 4.1 MCE生產動力學解析 47 5. 結果與討論 55 5.1生產凝乳酵素之菌株篩選與鑑定 55 5.2 初始PH對生產凝乳酵素之影響 59 5.3額外添加物對生產之探討 63 5.3.1金屬離子對生產凝乳酵素之影響 63 5.3.2 NaCl濃度對生產凝乳酵素之影響 67 5.4 培養基組成探討 71 5.4.1氮源對生 產凝乳酵素之影響 71 5.4.2 碳源對生產凝乳酵素之影響 75 5.4.3 澱粉種類對生產凝乳酵素之影響 80 5.4.4 澱粉濃度對生產凝 乳酵素之影響 84 5.5發酵槽實驗 90 5.5.1 曝氣量對生產凝乳酵素之影響 90 5.5.2 轉速對生產凝乳酵素之影響 93 5.5.3 調 控pH對生產凝乳酵素之影響 97 5.6 B. subtilis DYU6微生物生產動力學解析 101 5.7 B. subtilis DYU6凝乳酵素純化 107 5.8 不 同乳基質條件對凝乳酵素之特性探討 116 5.8.1 乳基質濃度之探討 118 5.8.2 溫度之探討 122 5.8.3 乳基質pH之探討 125 5.8.4 金屬離子之探討 128 5.8.5 CaCl2濃度之探討 131 5.8.6 NaCl濃度之探討 133 5.9 不同酵素條件對凝乳活性之探討 136 5.9.1 初 始酵素pH對凝乳活性的影響 136 5.10 凝乳塊口感模擬測試 141 5.10.1 乳基質pH對凝乳塊之影響 141 5.10.2 溫度對凝乳塊之 影響 143 5.10.3 酵素量對凝乳塊之影響 146 5.11 凝乳酵素儲存穩定性 148 6. 結論 150 參考文獻 152 圖目錄 Figure 1-1 Schematic of this study procedure. 5 Figure 1-2 Motivation and purpose of this study procedure. 6 Figure 2-1 The coagulation of milk by MCE includes two separate steps: 22 Figure 3-1 Schematic diagram of the fermentor. 31 Figure 3-2 The diafiltration system.

32 Figure 3-3 The Standard Curve of protein concentration. 35 Figure 3-4 The Standard Curve of tyrosine concentration. 37 Figure 3-5 Experimental apparatus for the measurement of curd strength. 38 Figure 3-6 The Standard Curve of starch concentration. 41 Figure 3-7 The Standard Curve of glucose concentration. 42 Figure 5-1 Appearance of cultured with the screened strain of production rennet's bacterial. 56 Figure 5-2 Phylogenetic tree showing species relatedness of Bacillus subtilis DYU6 isolated in

(2)

soybean waste residue. 57 Figure 5-3 Scanning electron micrograph (SEM) of B. subtilis DYU6. 58 Figure 5-4 The time course of cell growth and milk-clotting activity of enzyme by B. subtilis DYU6 in various initial pH medium 61 Figure 5-5 Effect of initial pH on MCE and protein content in fermentation broth by B. subtilis 62 Figure 5-6 The time course of cell growth and milk-clotting activity of enzyme by B. subtilis DYU6 in medium containg various metal ions. 65 Figure 5-7 Effect of metal ions on MCE and protein content in fermentation broth by B. subtilis DYU6 after 36h…...66 Figure 5-8 The time course of cell growth and milk-clotting activity of enzyme by B. subtilis DYU6 in medium containg various NaCl concentration. 69 Figure 5-9 Effect of NaCl concentration on MCE and protein content in fermentation broth by B. subtilis DYU6 after 36h 70 Figure 5-10 The time course of cell growth, protein concentration, proteolytic activity and milk-clotting activity of enzyme from different nitrogen source culture by B. subtilis DYU6. 73 Figure 5-11 Effect of different nitrogen source on MCE and proteolytic activity in fermentation broth by B.

subtilis DYU6 after 36h. 74 Figure 5-12 The time course of cell growth, proteolytic activity and milk-clotting activity of crude enzyme from different carbon sources culture by B. subtilis DYU6. 77 Figure 5-13 The time course of cell growth, protease activity and milk-clotting activity of crude enzyme from different sugar cane molasses culture by B. subtilis DYU6. 78 Figure 5-14 Effect of different carbon source on MCE and protein content in fermentation broth by B. subtilis DYU6 after 36h. 79 Figure 5-15 The time course of cell growth, milk-clotting activity, starch concentration, starch hydrolysis enzyme activity and production of reducing sugars of enzyme from different starch of carbon source culture by B. subtilis DYU6. 82 Figure 5-16 Effect of starch culture on MCE and protein content in fermentation broth by B. subtilis DYU6 after 48h. 83 Figure 5-17 The time course of cell growth and

milk-clotting activity of enzyme in medium containing different concentration of starch (Reagent Grade) by B. subtilis DYU6. 86 Figure 5-18 Effect of starch concentration on MCE and protein content in fermentation broth by B. subtilis DYU6 after 36h 87 Figure 5-19 The time course of cell growth and milk-clotting activity of enzyme in medium containing different concentration of starch (sensibly tapioca) by B. subtilis DYU6. 88 Figure 5-20 Effect of different Sensibly tapioca starch concentration on MCE and protein content in fermentation broth by B. subtilis DYU6 after 36h. 89 Figure 5-21 Time course of MCE production by B. subtilis DYU6 at various aeration rate in a 3L fermentor. 91 Figure 5-22 Effect of various aeration rate on MCE and protein content in fermentation broth by B. subtilis DYU6 after 36h 92 Figure 5-23 Time course of MCE production by B. subtilis DYU6 at various agitation rate in a 3L fermentor (aeration rate: 0.5vvm). 95 Figure 5-24 Effect of various agitation rate on MCE and protein content in fermentation broth by B. subtilis DYU6 after 36h 96 Figure 5-25 Time course of MCE production by B. subtilis DYU6 at various pH medium in a 3L fermentor 99 Figure 5-26 Effect of various pH on MCE and protein content in fermentation broth by B. subtilis DYU6 after 24h 100 Figure 5-27 Comparison of experimental data and kinetic model predicitions of the growth at various aeration rate by using Eq. (4-2). 102 Figure 5-28 Comparison of experimental data and kinetic model predicitions of the growth at various agitation rate by using Eq. (4-2). 104 Figure 5-29 Comparison of experimental data and kinetic model predicitions of the growth at various pH culture by using Eq. (4-2). 106 Figure 5-30 Elution diagram of MCE by using superdexTM grade column

chromatography. 110 Figure 5-31 SDS-PAGE of milk-clotting enzyme purification steps. 112 Figure 5-32 Effect of milk source on milk-clotting activity of enzyme from different carbon source in fermentation broth by B. subtilis DYU6. 117 Figure 5-33 Effect of skim milk concentration on milk-clotting activity of enzyme from fermentation liquid produced by B. subtilis DYU6. 120 Figure 5-34 Lineweaver-Burk plot for velocity versus substrate concnetration for milk-clotting enzyme produced by B. subtilis DYU6. 121 Figure 5-35 Effect of different temperature on milk-clotting activity of enzyme from fermentation liquid produced by B. subtilis DYU6. 124 Figure 5-36 Effect of various pH of skim milk on milk-clotting activity of enzyme from fermentation liquid produced by B. subtilis DYU6. 127 Figure 5-37 Effect of different metal ions on milk-clotting activity from fermentation liquid produced by B. subtilis DYU6. 128 Figure 5-38 Effect of CaCl2 concentration on Milk-clotting activity of enzyme from fermentation liquid produced by B.

subtilis DYU6. 132 Figure 5-39 Effect of NaCl concentration on milk-clotting activity of enzyme from fermentation liquid produced by B. subtilis DYU6. 135 Figure 5-40 Effect of various pH of enzyme on milk-clotting activity by Bacillus subtilis DYU6. 138 Figure 5-41 Effect of heating time and temperature of MCE from B. subtilis DYU6. 140 Figure 5-42 Comparison of the strength of rennet gels made from MCE by different pH. 142 Figure 5-43 Comparison of the strength of rennet gels made from MCE by different temperature. 145 Figure 5-44 Comparison of the strength of rennet gels made from MCE concentration by B. subtilis DYU6. 147 Figure 5-45 Effect of storage time on milk-clotting activity of enzyme concentration and enzyme powder from fermentation broth produced by B. subtilis DYU6. 149 表目錄 Table 2-1 List of fungal reported to produce milk clotting enzyme. 14 Table 2-2 List of bacteria reported to produce milk clotting enzyme. 15 Table 3-1 Anchor dry skim milk powder standard analysis per 100 grams of powder. 24 Table 3-2 Dry skim milk powder from Fluka company standard analysis. 26 Table 5-1 Milk-clotting activity of precipitation fraction of the B. subtilis DYU6. 109 Table 5-2 Purification of rennet from B. subtilis DYU6. 111 Table 5-3 Milk-clotting enzymes produced by various microorganisms. 113

參考文獻

1.林慶文。1987。乳品加工學。華香園出版社。台北市。 2.徐明生、王?妮、?富新。 2005。 羔羊?胃?凝乳特性的研究。?北??? 20:

(3)

103-106。 3.馬俊。1989。微生物凝乳?的研究(J)。微生物學通報1 : 340-343。 4.張勝善。1989。牛乳與乳製品。長河出版社。台北市。 5.

曾劍超、馬力、黃耀全、吳希茜。2007。薑汁中凝乳成份的分析。乳業科學與技術。5: 233-235。 6.Abbas, H.M., Foda, M.S., Shahein, N.M. and .Moharam, M. 1998. Utilization of Rhizopus oligosporus milk clotting enzyme in the manufacture of Domiati cheese. Egypt J Dairy Sci 26: 263–270. 7.Abdel-Fattah, A. F. and El-Hawwary, N. M.. 1973. Action of some metal ions, EDTA, and heated milk on the milk-clotting process of Penicillium citrinum rennin-like enzyme. Z Allg Mikrobiol 13: 373-379. 8.Abdel-Fattah, A.F., El-Hawwary, N.M., 1974. Activity and properties of the Penicillium citrinum milk-clotting enzyme. ZbL Bakt Abt 11: 481-486. 9.Abdel-Fattah, A.F., Ismail, A.S., El-Aassar, S.A., 1987.

Purification and properties of rennin-like enzyme from Absidia cylindrospora. Zentralbl Mikrobiol 142: 37-40. 10.Abdel-Fattah, A.F., Mabrouk, S.S.. 1972. On the clotting of milk by rennet-like enzyme of Aspergillus niger. Z Allg Mikrobiol 12: 89-95. 11.Abdel-Fattah, A.F., Saleh, S.A.. 1979.

Production and isolation of milk clotting enzyme from Aspergillus versicolor. ZbL Bakt 11: 547-550. 12.Akuzawa, R., Yogi, N., Kimura, M. and Okitani, A. 1994. Purification and characterization of a serine proteinase from Lactococcus lactic spp. Lactis IAM 1198. Anim Sci Tech 65: 22 –32. 13.Aleandri, R, Schneider, JC and Buttazzoni, LG.. 1989. Evaluation of milk for cheese production based on milk characteristics and Formagraph measures. J Dairy Sci 72: 1967-1975. 14.Areces, L.B., Biscogliode, M., Jimenez, M. J. Bonino, M.A,.A. Parry, E. R. Fraile, H.M.1992.

Purification of cynarases from artichoke (Cynara scolymus L.):enzymatic properties of cynarase A. Appl Biochem Biotech 37: 283. 15.Asif-Ullah, M., Kim, K. and Yu, Y. G. 2006. Purification and characterization of a serine protease from Cucumis trigonus Roxburghi. Phytochemistry 67: 870 –875. 16.Awad, S.. 2007. Effect of sodium chloride and pH on the rennet coagulation and gel firmness. SGLWT 40: 220–224. 17.Bailey, M.J.

and Siika-Aho, M.. 1988. Production of microbial rennin. Biotechnol Lett 10: 161-166. 18.Balcones, E., Olano, A., and Calvo, M. M.. 1996.

Factors affecting the rennet clotting properties of ewe’s milk. J Agr Food Chem 44: 1993–1996. 19.Banerjee, U.C., Sani, R.K., Azmi, W., Soni, R. 1999. Thermostable alkaline portease from Bacillus brevis and its characterization as a laundry detergent additive. Process Biochem 35: 213 –219. 20.Bencini, R.. 2002. Factors affecting the clotting properties of sheep milk. J Sci Food Agric 82: 705-719. 21.Beyenal, L.H., S. Seker, B.

Salih and A.Tanyolac, 1999. The effect of D-glucose on milk clotting activity of Mucor miehei in a chemostat with biomass retention. J Chem Technol Biotechnol 74: 527-532. 22.Birkkjaer, H.and Jonk, P. 1985. Technological suitability of calf rennet substitutes. Int Dairy Fed Bull 194: 8 –13. 23.Bremer, L. G. B., Bijsterbosch, B. H., Schrijvers, R., van Vliet, T. and Walstra, P.. 1990. On the fractal nature of the structure of acid casein gels. Colloids Surf 51: 159–170. 24.Brito- De La Fuente, E., Choplin, L. and Tanguy, P. A. 1997. Mixing with helical ribbon impellers:

effect of highly shear thinning behaviour and impeller geometry. Trans I ChemE A 75: 45- 52. 25.Broadfoot, R. and Miller, K. F. 1990.

Rheological studies of massecuites and molasses. INT Sugar J 92: 107- 112. 26.Calvo, M. M. and Balcones, E.. 1998. Influence of heat treatment on rennet clotting properties of mixtures of cow’s, ewe’s and goat’s milk and on cheese yield. J Agr Food Chem 46: 2957– 2962. 27.Carlson, A., Hill, C. and Olson, N. F.. 1987. Kinetics of milk coagulation: III mathematical modeling of the kinetics of curd formation following enzymatic hydrolysis of kappa-casein-parameter estimation. Biotechnol Bioeng 29: 601–611. 28.Cavalcanti, M.T.H. and Teixeira, M.F.S., Lima Filho J.L., Porto A.L.F. 2004. Partial purification of new milk clotting enzyme produced by Nocardiopsis sp. Bio Technol 93: 29-35. 29.Channe, P.S. and Shewale, J.G.. 1998. Infuence of culture conditions on the formation of milk-clotting protease by Aspergillus niger MC4. World J Microbiol Biotechnol 14: 11–15. 30.Chapman, HR. 1981. Standardization of milk for cheesemaking at research level. J Soc Dairy Technol 34: 147-152.

31.Creamer, L. K.. 1985. Water absorption by renneted casein micelles. Milchwissenschaft 40: 589–591. 32.D’Souza, T. M. and Pereira, L..

1980. Production and Immobilization of a Bacterial Milk-Clotting Enzyme. J Dairy Sci 65: 11. 33.D’Souza, T.M., Pereira, L. 1982. Production and immobilization of a bacterial milk-clotting enzyme. J Dairy Sci 65: 2074–2081. 34.Da Silveira, G.G., De Oliveira, G.M., Ribeiro, E.J., Monti, R. and Contiero, J.. 2005. Microbial rennet produced by Mucor miehei in solid-state and submerged fermentation. Brazilian Arch Biol Technol 48:

931–937. 35.Dalgleish, D. G. and Law, J. R.. 1989. pH-induced dissociation of bovine casein micelles. II. Mineral solubilization and its relation to casein release. J Dairy Res 56: 727–735. 36.Dalgleish, D. G.. 1990. The effect of denaturation of β-lactoglobulin on renneting-a quantitative study. Milchwissenschaft 45: 491-494. 37.Daviau, C., Famelart, M. H., Pierre, A., Goude′dranche, H. and Maubois, J. L. 2000. Rennet coagulation of skim milk and curd drainage: effect of pH, casein concentration, ionic strength and heat treatment. Lait 80: 397–415. 38.De Kruif, C. G., and Roefs, S. P. F. M.. 1996. Skim milk acidification at low temperatures: A model for the stability of casein micelles. NIZO Food Research 50: 113–120. 39.De Kruif, C. G., and Zhulina, E. B.. 1996. κ-Casein as a polyelectrolyte brush on the surface of casein micelles. Colloids Surfaces A 117:151–159. 40.De Lima, C.J.B., Cortezi, M., Roberta, B.. Lovaglio, E.J., Ribeiro, J.. 2008. Production of Rennet in Submerged Fermentation with the Filamentous Fungus Mucor miehei NRRL 3420. WASJ 4: 578-585. 41.Debette, J. 1991. Isolation and characterization of an extracellular protease produced by a soil strain of Xanthomonas maltophila. Curr Microbiol 22: 85–90. 42.Dutt, K., Meghwanshi, G.K., Gupta, P. and Saxena, R. K.. 2008. Role of casein on induction and enhancement of production of a bacterial milk clotting protease from an indigenously isolated Bacillus subtilis. SfAM 46: 513–518. 43.Dybowska, E., and Fujio, Y. 1996. Effect of temperature and gluconod- lactone (GDL) concentration on milk aggregation and gelation process as revealed by optical method. Milchwissenschaft 51: 557– 560. 44.El-Bendary, M.

A., . Moharam, M. E and Ali, T. H.. 2007. Purification and characterization of milk clotting enzyme produced by Bacillus sphaericus. J Appl Sci Res 3: 695-699. 45.Escobar, J. and Barnett, S. 1993. Effect of agitation speed on the synthesis of Mucor miehei acid protease. Enzyme Microb Technol 15: 1009-1013. 46.Escobar, J. and Barnett, S.. 1995. Syntesis of Acid Protease from Mucor miehei: Integration of Production and Recovery. Process Bioch 30: 695-700. 47.Escobar, J. and Barnett,S.. 1995. Effect of agitation speed on the synthesis of Mucor miehei acid protease.

Enzyme Microb Technol 15: 1009-1013. 48.Esteves, C.L.C., Lucey, J.A., Wang, T. and Pires, E.M.V. 2003. Effect of pH on the gelation properties of skim milk gels made from plant coagulants and chymosin. J Dairy Sci 86: 2558–2567. 49.Esteves, C.L.C., Lucey, J.A., Wang, T. and Pires,

(4)

E.M.V.. 2003. Effect of pH on the gelation properties of skim milk gels made from plant coagulants and chymosin. J Dairy Sci 86: 2558–2567.

50.Flueler, O. and Puhan, Z.. 1978. Neue erkenntnisseu ber die labtra gheit der mich. Schweizerische Milchwirtschaftliche Forschung 7: 61–68.

51.Fogarty, WM. and Kelly, CT. 1990. Recent advances in microbial amylases. Microbial Enzymes and Biotech: 71–132. 52.Fogarty, WM. and Kelly, CT.. 1979. Starch degrading enzymes of microbial origin. Prog Ind Microbiol 15: 87–150. 53.Foltmann, B.. 1959. On the enzymatic and the coagulation stages of the renneting process. In Proceedings of the 15th International Dairy ongress vol. 2 (pp.655–661). London. 54.Fox, P. F.

1989. Proteolysis during cheese manufacture and ripening. J Dairy Sci 72: 1379-1400. 55.Fox, P.F., 1991. Food Enzymology. Elsevier Appl Sci 2:

636. 56.Fox, P.F., Guinee, T.P., Cogan, T.M., McSweeney, P.L.H.. 2000. Fundamentals of Cheese Science. Aspen Publishers: 110–120.

57.Gastaldi, E., Pellegrini, O., Lagaude, A. and Tarodo de la Fuente, B. 1994. Functions of added calcium in acid milk coagulation. J Food Sci 59:

310–320. 58.Ghareib, M., Hamdy, H.S., Khalil, A. A.. 2001. Production of intracellular milk-coltting enzyme in submerged cultures of Fusarium subglutinans. Acta Microbiol Pol 50: 139– 147. 59.Green, A.A. and Hughens, W.L.. 1955. Protein fractionation on the basis of solubility in aqueous solutions of salts and organic solvents. Meth Enzymol 1: 67–90. 60.Green, ML. and Manning, DJ.. 1982. Development of texture and flavour in cheese and other fermented products. J Dairy Res 49: 737-748. 61.Grigelmo, N. M., Ibarz, A. R. and Martin, O. B. 1999. Rheology of peach dietary fibre suspensions. J Food Eng 39: 91- 99. 62.Gunasekaran, S., and Ay, C. 1996. Milk coagulation cut-time determination using ultrasonics. J Food Process Eng 19: 63–73. 63.Hangen, P. and Tung, M. A. 1967. Rheograms for power- law fluids using coaxial cylinder viscometers and a template method. CIFST 9: 98- 104. 64.Haque, Z., Kristjansson, M. M. and Kinsella, J. E.. 1987. Interaction between k-casein and β-lactoglobulin: possible mechanism. J Agric Food Chem 35: 644-649. 65.Hashem, A. M.. 1999. Optimization of milk-clotting enzyme productivity by Penicillium oxalicum. Bio Technology 70: 203-207. 66.Hashem, A. M.. 2000. Purification and properties of a milk-clotting enzyme produced by Penicillium oxalicum. Bioresour Technol 75: 219-222. 甲、Hermier, J.and Cerf, O. 1987. The preparation of milk. Methods of heat treatment. In A. Eck, Cheesemaking science and technology (pp. 149-156). Paris: Lavoisier Publishing. 67.Hoffmann, M. A. M. and Van Mil, P. J.

J. M.. 1997. Heat-induced aggregation of β-lactoglobulin: role of the free thiol group and dis- ulfide bonds. J Agric Food Chem. 45: 2942-2948.

68.Holt, C. 1997. The milk salts and their interaction with casein. Advanced dairy chem 3 : 233–256. 69.Horne, D. S. and C. M. Davidson. 1986.

The effect of environmental conditions on the steric stabilization of casein micelles. Colloid Pol Sci 264:727–734. 70.Horne, D. S. and J. Leaver.

1995. Milk proteins on surfaces. Food Hydrocolloid 92: 91–95. 71.Humme, H. E. 1972. The optimum pH for the limited specific proteolysis of k-casein by rennin (primary phase of milk clotting). Netherlands Milk Dairy J 26: 180–185. i.Hyslop, D. B., Richardson, T. and Ryan, D. S. 1979.

Kinetics of pepsin-initiated coagulation of k-casein. BBA 556: 390–396. 72.Imafidon, G. I. and Farkye, N. Y. 1994. Composition of Cheddar cheese made from high-heat treated milk. Issue 9402: 433–438. 73.Ismail, A.M.S., El-Aassar, S.A., Abdel-Fattah, A.F.. 1984. Production of milk-clotting and proteolytic enzymes by fungi. Agric Wastes 10: 95–102. 74.Karlsson, A.O., Ipsen, R. and Ardo, Y. 2007a. Influence of pH and NaCl on rheological properties of rennet-induced casein gels made from UF concentrated skim milk. Int Dairy J 17: 1053–1062. 75.Khan, M.R., Blain, J.A. and Patterson, D. E.. 1979. Extracellular proteases of Mucor pisullus. Appl Environ Microbiol 37: 719. 76.Know, Y.T., Kim, J.O., Moo, S.Y., Lee, H.H., Rho, H.M.. 1994. Extracellular alkaline protease from alkalophilic Vibrio alginolyticus strain RH530. Biotechnol Lett 16: 413 –418. 77.Kobayashi,F., Yabuki, M., Hoshino, K., Sakamoto, M.. 1975. Isolation and characterization of Trametes ostreiformis K-1, and purification and properties of milk clotting enzyme produced by the fungus. J Agric Chem Soc Jpn 49: 81–92. 78.Kohmann, K.L., Nielsen, S.S.

and Ladisch, M.R. 1991. Purification and characterization of an extracellular protease produced by Pseudomonas fluorescens M 3/6 J Dairy Sci 74: 4125–4136. 79.Kolaczkowska, M., Chrzanowska, J., Jacyk, A., Szoltsyek, K. and Polanowski, A, 1988. Factors affecting rennin-like proteinase production by Fusarium moniliforme. Milchwissenschaft 43: 83. 80.Kopelman, I. J. and Cogan, U. 1976. Determination of clotting power of milk clotting enzymes. J Dairy Sci 59, 196–199. 81.Kowalchyk, A.W and Olson, N.F.. 1977. Effect of pH and Temperature on the Secondary Phase of Milk Clotting by Rennet. J Dairy Sci 60: 1256-1259. 82.Kumar, S., Sharma, N. S., Ssharan, M. R., Singh, R.. 2005. Extracellular acid protease from Rhizopus oryzae: purification and characterization. Process Biochem 40: 1701-1705. 83.Lamas, E.M., Barros, R.M., Balcao, V.M., Malcata, F.X.. 2001. Hydrolysis of whey proteins by proteases extracted from Cynara cardunculus and immobilized onto highly activated supports. Enzym Microb Tech 28: 642–652. 84.Laporte, M. F., Martel, R.and Paguin, P.. 1998. The near-infrared optic probe for monitoring rennet coagulation in cow’s milk. Int Dairy J 8: 659–666. 85.Le Gra, Y. and Brul, G. 1993. Les e′quilibres mine′raux du lait: influence du pH et de la force ionique. Lait 73: 51–60. 86.Lo pez, M. B., Botet, M. J., Hellin, P., Luna, A., and Laencina, J. 1995. Effect of thermal treatment on goat milk clotting time. Milchwissenschaft 50: 126–129. 87.Lo pez, M. B., Lomholt, S. B. and Qvist, K. B. 1998. Rheological properties and cutting time of rennet gels. Effect of pH and enzyme concentration. Int Dairy J 8: 289–293. 88.Lomholt, S.B. and Qvist, K.B. 1999. The formation of cheese curd. Technol of Cheesemaking 66–98. 89.Lucey, J. A., Gorry, C. and Fox, P. F. 1993. Rennet coagulation properties of heated milk. Agr Sci Finland 2: 361– 369. 90.Lucey, J. A., Johnson, M. E. and Horne, D. S.. 2003. Perspectives on the basis of the rheology and texture properties of cheese. J Dairy Sci 86: 2725–2743. 91.Lucey, J. A., T. van Vliet, K. Grolle, T. Geurts, and P. Walstra. 1997a. Properties of acid casein gels made by acidification with gluconodelta- lactone 1: Rheological properties. Int Dairy J 7:381–388. 92.Lucey, J. A., Tamehana, M., Singh, H., and Munro, P. A. 2000. Rheological properties of milk gels formed by a combination of rennet and glucono-δ-lactone. J Dairy Res 67, 415–427.

93.Magda A. El-Bendary, Maysa E. Moharam and Thanaa H. Ali. 2007. Purification and Characterization of Milk Clotting Enzyme Produced by Bacillus sphaericus. J Appl Sci Res 3: 695-699. 94.Magda, A., Maysa, E., Moharam, H. and Thanaa, H.A.. 2007. Purification and biochemical characterisation of a novel protease streblin. J Appl Sci Res 3: 695. 95.Marshall, R. J. 1986. Increasing cheese yield by heat treatment of milk. J Dairy Res 53: 313– 322. 96.Mashaly, R.I., Ramadan, B.I., Tahoun, M.K., El-Soda, M., Ismail, A. A.. 1981. Milk clotting protease from Mucor

(5)

mucedo. Milchwissenschaf 36: 677–679. 97.Matta, H. and Punj, V.. 1998. Isolation and partial characterization of a thermostable extracellular protease of Bacillus polymyxa B-17. Int J Food Microbiol 42: 139-145. 98.McDowell, A. K. R., K. N. Pearce, and L. K. Creamer. 1969. Seasonal variation in renneting time-a preliminary report. N. Z. J. Dairy Technol 4: 166. 99.McMahon DJ, Brown RJ, Richardson GH and Ernstrom CA, 1984. Effects of calcium, phosphate, and bluk culture media on milk coagulation properties. J Dairy Sci 67: 930-938. 100.McMahon, D. J., Brown, R. J. and Ernstrom, C. A. 1984. Enzymic coagulation of milk casein micelles. J Dairy Sci 67: 745–748. 101.McMahon, D. J., Richardson, G. H., and Brown, R. J. 1984. Enzymic milk coagulation: Role of equations involving coagulation time and curd firmness in describing coagulation. J Dairy Sci 67: 1185–1193. 102.Mehaia, M. A., and Cheryan, M. 1983. Coagulation studies of ultra filtration concentrated skim milk.

Michwissenschaft 38: 708–710. 103.Mellema, M., Leermakers, F. A. M., and de Kruif, C. G. 1999. Molecular mechanism of the renneting process of casein micelles in skim milk, examined by viscosity and light-scattering experiments and simulated by model self-consisted field (SCF) calculations. Langmuir 15: 6304–6313. 104.Messdaghi, D. and Dietz, K.. 2000. Characterization of an extracellular chymostationsensitive serine protease preferentially expressed in young plant tissues. BBA 1480: 107–116. 105.Metzger, L. E., Barbano, D. M., Kindstedt, P. S. and Guo, M.

R.. 2001. Effect of milk preacidification on low fat Mozzarella cheese: II. Chemical and functional properties during storage. J Dairy Sci 84: 1348 –1356. 106.Montilla, A., Balcones, E., Olano, A., and Calvo, M. M. 1995. Influence of heat treatments on whey protein denaturation and rennet clotting properties of cow’s and goat’s milk. J Agr Food Chem 43: 1908–1911. 107.Moreira, K.A., Porto, T. S., Teixeira, M. F. S., Porto, A. L.

F. and Lima Filho.2003. Production of milk clotting protease by a local isolate of Mucor circinelloides under SSF using agro-industrial wastes. J. L.

Process Biochem 39: 67 . 108.Moser, A. and Steiner, W. 1975. The influence of the term kd for endogenous metabolism on the evaluation of Monod kinetics for biotechnological processes. Eur J Appl Microbiol 1: 281- 289. 109.Muldoon, P. J. and Liska, B. J. 1972. Relationship between ionized calcium and curd tension in reconstituted nonfat dry milk. J Dairy Sci 55: 1300–1301. 110.Neelakantan, S., Mohanty, A. K. and Kaushik, J. K. 1999. Production and use of microbial enzymes for dairy processing. Current Sci 77: 143-148. 111.Nigam, J.M., Pillai, K.R., Baruah, J.N..

1981. Effect of carbon and nitrogen sources on neutral proteinase production by Pseudomonas aeruginosa. Folia Microbiol 26: 358–363. 112.O

’Callaghan, D.J., O’Donnell, C.P. and Payne, F.A. 2000. On-line sensing techniques for coagulum setting in renneted milks. J Food Eng 43:

155–165. 113.O’Keeffe, A., Phelan, JA. and Mulholland, E. 1981. Effect of seasonality on the suitability of milk for cheesemaking. Irish J Food Sci Technol 5:73. 114.Park, S. Y., Nakamura, K. and Niki, R. 1996. Effects of β-lactoglobulin on the rheological properties of casein micelle rennet gels. J Dairy Sci 79: 2137– 2145. 115.Patel, R. S., and Reuter, H. 1986. Effect of sodium, calcium and phosphate on properties of rennet coagulated milk. LWT 19: 288–291. 116.Payne, F. A., Hicks, C. L., Madangopal, S. and Shearer, S. A. 1993. Fiber optic sensor for predicting the cutting time of coagulating milk for cheese production. Transactions of the ASAE 36: 841–847. 117.Pinches, A. and Pallent, L. J. 1986. Rate and yield relationship in the production of xanthan gum by batch fermentation using complex and chemically defined growth media. Biotechnol Bioeng 26: 1484- 1496. 118.Poza, M., Sieiro, C., Carreira, L., BarrosVelazquez, J. and Villa, T.G.. 2003. Purification and partial characterization of milk-clotting enzyme extracted from glutinous rice wine mash liquor. J Ind. Microb Biot 30: 691. 119.Preetha, S. and Boopathy, R. 1994. Influence of culture conditions on the 120.Priest, F.G. 1977. Extracellular enzyme synthesis ion the genus Bacillus. Bacteriol Rev 41: 711-753. 121.Ramet, J.P., 2001. The technology of making cheese from camel milk (Cameleus dromedaries). Food and Agriculture Organization of the United Nations, Rome. renneted milk coagulation. J Dairy Res 62: 667–672. 122.Rao, M., Cooley, M. J. and Vitali, A. A. 1984. Flow properties of concentrated juices at low temperatures.IFT 38: 113- 119. 123.Raynal, K., and Remeuf, F. 1998. The effect of heating on physicochemical and renneting properties of milk: A comparison between caprine, ovine and bovine milk. Int Dairy J 8: 695– 706. 124.Robinson, D. K. and Wang, D. I. C. 1988.

A transport controlled bioreactor for the simultaneous production and concentration of xanthan gum. Biotechnol Progr 4: 231- 241.

125.Rudenskaya, G. N., Bogacheva, A. M., Preusser, A., Kuznetsova, A. V., Dunaevsky, Ya.E., Golovkin, B. N. 1998. Taraxalisin – a serine protease from dandelion Taraxacum officinale. Webb s l FEBS Letters 473: 237–240. 126.Saravacos, G. D. 1970. Effect of temperature on viscosity of fruit juices and purees. J Food Sci 35: 122- 125. 127.Seker, S., Beyenal, H. and Taniolac, A.. 1999. Modeling Milk Cotting Activity in the Continuous Production of Microbial Rennet from Mucor miehei. J Food Sci 64: 525-529. 128.Shehata, A.E., A.E. Fayed, A.A. Ismail and M.M. Salim. 1996. Production and characterization of bacterial coagulants as calf rennet replacer for Egyptian cheese making. Egypt J Food Sci 24: 417-449. 129.Shieha, C. J., Phan Thi, L. A., Shih, I. L.. 2009. Milk-clotting enzymes produced by culture of Bacillus subtilis natto. Biochem Eng J 43: 85–91 130.Solorza, F. J. and Bell, A. E. 1998. The effect of calcium addition on the rheological properties of a soft cheese at various stages of manufacture. IJDT 51: 23–29. 131.Srinivasan, R.A., Iyengar, M.K.K., Babbar, I.J., Chakraverty, S.C., Dudani, A.T., Iya, K.K., 1964.

Milk-clotting enzymes from microorganisms. Appl Microbiol 12: 475-478. 132.Steffe, J. F. 1992. Rheological methods in food process engineering.

East Lansing 158- 162. 133.Storry, J. E., Grandison, D., Millard, A. J., Owen, A. J., and Ford, G. D. 1983. Chemical composition and coagulation properties of rennetted milks from different breeds and species of rumiants. J Dairy Res 50: 215–221. 134.Tervala, H. L., Antila, V. S. and Syvaejaervi, J. 1985. Factors affecting the renneting properties of milk. Meijeritieteellinen-Alikakauskirja 43: 16–25. 135.Thakur, M. S.; Karanth, N. G. and Nand, K. 1990. Production of fungal rennet by Mucor miehei using solid state fermentation. Appl Microbiol Biotechnol 32: 409-413.

136.Tokita, Y. and Okamoto, A. 1995. Hydrolytic degradation of hyaluronic acid. Polym. Degrad Stab 48: 269- 273. 137.Tornero, P., Conejero, V.and Vera, P. 1996. Primary structure and expression of a pathogen-induced protease (PR-P69) in tomato plant: Similarity of functional domains to subtilisin-like endoprotease. PNAS 93: 6332–6337. 138.Tripathi, P., Tomar, R., Jagannadham, MV.. 2011. Purification and biochemical characterisation of a novel protease streblin. Food Chem 125: 1005–1012. 139.Tsioulpas, A., Lewis, M. J., and Grandison, A. S. 2007. Effect of minerals on casein micelle stability of cows’ milk. J Dairy Res 74: 167–173. 140.Tuinier, R., and de Kruif, C. G.. 2002. Stability of casein

(6)

micelles in milk. J Chem Physics 117: 1290–1295. 141.Udabage, P., McKinnon, I. R. and Augustin, M. A. 2001. Effects of mineral salts and calcium chelating agents on the gelation of renneted skim milk. J Dairy Sci 142.Ustunol, Z. and Brown, R. J.. 1985. Effects of heat treatment and posttreatment holding time on rennet clotting of milk. J Dairy Sci 68: 526-530. 143.Van Hooydonk, A. C. M. and van den Berg, G. 1988. Control and determination of the curd-setting during cheese making (bulletin 225). Brussels: IDF 84: 1569–1575. 144.Van Hooydonk, A. C. M., Boerrigter, I. J. and Hagedoorn, H. G. 1986b. pH-induced physico-chemical changes of casein micelles in milk and their effect on renneting. Neth Milk Dairy J 40: 297–313. 145.Vasbinder, A. J., Mil, A. and. de Kruif, C. G. 2001. Acid-induced gelation of heat treated milk studied by Diffusing Wave Spectroscopy. Colloids Surfaces B 21: 245–250. 146.Vasbinder, A. J., Rollema, H. S., and De Kruif, C. G. 2003. Impaired rennetability of heated milk; study of enzymatic hydrolysis and gelation kinetics. J Dairy Sci 86: 1548– 1555. 147.Visser, S., van Rooyen, P. J. and Slangen, C. J.

1980. Peptide substrates for chymosin (rennin). Isolation and substrate behaviour of two tryptic fragments of bovine k-casein. Eur J Biochem 108:

415–421. 148.Walstra, P. 1990. On the stability of casein micelles. J. Dairy Sci 73: 1965–1979. 149.Walstra, P., Noodmen, A., Jellmes, A.. 1999.

Protein preparation In: Principle of milk properties and proteinases [M]. New york: Mareel Dekker Inc: 471-483. 150.Waugana, A., Singh, H. and Bennett, R. J. 1998. Rennet coagulation properties of skim milk concentrated by ultrafiltration: Effects of heat treatment and pH adjustment. Food Res Int 31: 645– 651. 151.Waugana, A., Singh, H., and Bennett, R. J. 1996. Influence of denaturation and aggregation of β-lactoglobulin on rennet coagulation properties of skim milk and ultrafiltered milk. Food Res Int 29: 715– 721. 152.Weiss, R. and Ollis, D. 1980. Extracellular microbial polysaccharides.Ⅰ. Substrate, biomass, and product kinetic equations for batch xanthan gum fermentration. Biotechnol Bioeng 22: 859- 873. 153.Wilson, G. A. and Wheelock, J. V.. 1972. Factors affecting the action of rennin in heated milk. J Dairy Res 39: 413-419. 154.Yu, P.J. and Chou, C.C.. 2005. Factors Affecting the Growth and Production of Milk-Clotting Enzyme by Amylomyces rouxii in Rice Liquid Medium. Food Technol Biotechnol 43(3): 283–288. 155.Zoon, P., van Vliet, T. and Walstra, P. 1988. Rheological properties of rennet-induced skim milk gels.

Netherlands Milk Dairy Journal 42: 249–269

參考文獻

相關文件

而在後續甲烷化反應試驗方面,以前段經厭氧醱酵產氫後之出流水為進流基 質。在厭氧光合產氫微生物方面,以光合作用產氫細菌中產氫能力最好的菌株 Rhodopseudomonas palustris

Before along with the evolution of time, the development of science and technology, the progress of cell phone, the cell phone that we used, from the beginning has the basic

黑木耳 (Auricularia polytricha) 是台灣普遍的食用 菌之一,為一種低熱量的食品,亦是一種富含食用纖維及

On the course content page, click the function module to switch to different learning activities pages for learning; you can also directly click the "learning activity" in

Active Education: Growing Evidence on Physical Activity and Academic Performance. Retrieved

Xianggang zaji (miscellaneous notes on Hong Kong) was written by an English and translated into Chinese by a local Chinese literati.. Doubts can therefore be cast as to whether

Through training in coaching, and integrating the foundation knowledge and skills to design and implement an exercise and fitness training activity, this course not only

Eliciting young children’s perceptions of play, work and learning using the activity apperception story procedure.. Work and play in