• 沒有找到結果。

Solution: (a)(6%) The original equation = 1 nΣnmi=1 i2n4 n6+ i6 = 1 nΣnmi=1 (ni)2 1 + (ni)6 By the definition of Riemann sum

N/A
N/A
Protected

Academic year: 2022

Share "Solution: (a)(6%) The original equation = 1 nΣnmi=1 i2n4 n6+ i6 = 1 nΣnmi=1 (ni)2 1 + (ni)6 By the definition of Riemann sum"

Copied!
13
0
0

加載中.... (立即查看全文)

全文

(1)

1021微微微甲甲甲01-04班班班期期期末末末考考考解解解答答答 1. (10%)

(a) Evaluate the limit

Im = lim

n→∞

nm

X

i=1

i2n3

n6+ i6 = lim

n→∞

 n3

n6+ 16 + 22n3

n6+ 26 + · · · + (nm − 1)2n3

n6+ (nm − 1)6 + (nm)2n3 n6+ (nm)6

 ,

where m is a positive integer.

(b) Compute lim

m→∞Im. Solution:

(a)(6%)

The original equation = 1

nmi=1 i2n4 n6+ i6

= 1

nmi=1 (ni)2 1 + (ni)6

By the definition of Riemann sum,

= ˆ m

0

x2

1 + x6dx (3 points)

= 1 3

ˆ m

0

dx3

1 + (x3)2 (1 point)

= 1

3tan−1(x3) |m0 +C

= 1

3tan−1(m3) + C (2 points) Therefore, Im = 1

3tan−1(m3), where m is a positive integer . ps. Other methods for solving

ˆ m

0

x2

1 + x6dx are permitted.

(b)(4%)

m→∞lim Im = lim

m→∞

1

3tan−1(m3)

= 1 3 · π

2

= π 6.

(2)

2. (15%) Evaluate the integral.

(a) ˆ 1

0

x23

1 − xdx.

(b) ˆ

x√

3 − 2x − x2dx.

Solution:

(a)(8%) Let u = √3

1 − x, and we can find that u3 = 1 − x and dx = −3u2du . The original equation =

ˆ 0 1

(1 − u3)2 · u · (−3u2)du

= −3 ˆ 0

1

(u9− 2u6+ u3)du (4 points)

= −3( 1

10u10−2

7u7+ 1

4u4) |01 (2 points)

= 27

140. (2 points)

ps. Other methods for solving this integral are permitted.

(b)(7%)

The original equation = ˆ

xp

4 − (x + 1)2 dx ...Equation(1) Let x + 1 = 2 sin θ , and we can find that dx = 2 cos θ dθ ...Equation(2)

Substitute Equation(2) into Equation(1), (3 points for Trigonometric substitution) and we have

ˆ

(2 sin θ − 1) · 2 cos θ · 2 cos θ dθ. (3 points)

= −8

3 cos3θ − 2θ − sin 2θ + C

= −1

3 (3 − 2x − x2)32 − 2 sin−1(x + 1

2 ) − x + 1 2

3 − 2x − x2+ C. (1 point) ps. Other methods for solving this integral are permitted.

(3)

3. (20%) Evaluate the integral.

(a)

ˆ sin x cos x sin4x + cos4xdx.

(b) ˆ ∞

1

x2− 3

(x2− 2x + 3)(x2+ 2x + 3)dx.

Solution:

(a) (8%) Sol. (1)

ˆ sin x cos x

sin4x + cos4xdx =

ˆ 1

2sin 2x

(1−cos x2 )2+ (1+cos x2 )2dx with u = cos 2x, du = −2 sin 2xdx

= −1 2

ˆ 1

1 + u2du

= −1

2tan−1u + C

= −1

2tan−1(cos 2x) + C

Sol. (2)

ˆ sin x cos x

sin4x + cos4xdx =

ˆ tan x sec2x 1 + tan4x dx

with u = tan2x, du = 2 tan x sec2xdx

= ˆ 1

2du 1 + u2

= 1

2tan−1u + C

= 1

2tan−1(tan2x) + C

Sol. (3)

ˆ sin x cos x

sin4x + cos4xdx =

ˆ sin x cos x

sin4x + (1 − sin2x)2dx

with u = sin2x, du = 2 sin x cos xdx

=

ˆ 1

2du u2+ (1 − u)2

= 1 2

ˆ 1

2u2− 2u + 1du

= 1 2

ˆ 2

(2u − 1)2+ 1du

= 1

2tan−1(2u − 1) + C

= 1

2tan−1(2 sin2x − 1) + C

(4)

Grading policy:

(1) 4% for any proper change of variables (including correct du).

(2) 4% for correct integration. -1% if C is missing.

(b) (12%)

(1) Partial fraction (5%)

Define f (x) = x2− 3

(x2 − 2x + 3)(x2+ 2x + 3)

= Ax + B

x2− 2x + 3 + Cx + D

x2+ 2x + 3 (2% for the form)





x3: A + C = 0

x2: 2A + B − 2C + D = 1 x1: 3A + 2B + 3C − 2D = 0

x0: 3B + 3D = −3

















A = 1 2 B = −1

2 C = −1 2 D = −1 2

∴ f (x) = 1

2( x − 1

x2− 2x + 3 − x + 1

x2 + 2x + 3) (3%)

(2) Integration (4 %)

ˆ 1

2( x − 1

x2− 2x + 3 − x + 1

x2 + 2x + 3)dx

= ˆ 1

4( 2x − 2

x2 − 2x + 3− 2x + 2 x2+ 2x + 3)dx

= 1 4(ln

x2− 2x + 3 − ln

x2+ 2x + 3 ) + C

= 1 4ln

x2− 2x + 3 x2 + 2x + 3

+ C

(3) Improper integral (3 %) ˆ ∞

1

f (x)dx

= lim

b→∞

ˆ b 1

1

4( 2x − 2

x2− 2x + 3 − 2x + 2 x2+ 2x + 3)dx

= lim

b→∞[1 4ln

x2− 2x + 3 x2+ 2x + 3 ]b1

= lim

b→∞

1 4ln

b2− 2b + 3 b2 + 2b + 3

−1 4ln

1 − 2 + 3 1 + 2 + 3

= 1

4ln 1 − 1 4ln1

3

= 1 4ln 3

(5)

(Upper limit: 2%; lower limit: 1%.) Grading policy:

The three parts are credited independently, e.g., you will still get full 4% in part (2) if the integration process is correct based on your result in (1), even though your result in (1) may be incorrect.

(6)

4. (10%) A function y = y(x) satisfies the equation

y(x) = x + ˆ x2

0



x − y(√ t) −√

t − 1 2√

t + 1



etdt, x ≥ 0.

(a) Find a differential equation with initial condition for y.

(b) Solve the differential equation.

Solution:

y = x + x ˆ x2

0

etdt − ( ˆ x2

0

(y(√ t) +√

t + 1 2√

t − 1)etdt) (1 point) Differentiate both side,

dy

dx = 1 + ˆ x2

0

etdt + x · 2xex2 − (y(x) + x + 1

2x − 1) · ex2 · 2x

dy

dx = 2xex2(1 − y(x)) or dy

dx+ 2xex2y(x) = 2xex2 (3 points)

and boundary condition y(0) = 0 (1 point) you may choose intergal factor or separable method,

• intergal fatcor: ˆ

2xex2dx = eex2(2 points)

⇒ (eex2y)0 = 2xex2eex2

⇒ eex2y(x) = ˆ

2xex2eex2dx = eex2 + C1 (1 point)

• separable mentod: ˆ 1

1 − ydy = ˆ

2xex2dx

⇒ − ln(1 − y) = ex2 + C2

⇒ y(x) = 1 − e−ex2−C2 apply boundary condition y(0) = 0,

⇒ y(x) = 1 − e1−ex2 (2 points) if you make a mistake at the first step:

y = 1 + (x − y(x) − x − 1

2x + 1) · 2xex2

we’ll give you 2 points , write correct boundary condition, giving 1 point and finally you calculate integral factor, giving 2 points; totally 5 points.

(7)

5. (10%)

(a) If the infinite curve y = e−x, x ≥ 0, is rotated about the x-axis, find the area of the resulting surface.

(b) Find the arc length of the infinite curve with polar equation r = θ−1, θ ≥ 1.

Solution:

(a)

The area of surface is

S = 2π ˆ ∞

0

e−xp

1 + (−e−x)2dx(2pt)

= 2π ˆ 0

1

−√

1 + u2du

= 2π ˆ π

4

0

p1 + tan2y sec2ydy

= 2π ˆ π

4

0

sec3ydy(1pt)

= π[log(√

2 + 1) +√

2](2pt) (b)

The arc length is

L = ˆ ∞

1

r

r2+ (dr dθ)2dθ ˆ ∞

1

√θ−2+ θ−4dθ(2pt) ˆ ∞

1

1 θ−2

√1 + θ2

>

ˆ ∞ 1

1 θ−2

√ θ2

= ˆ ∞

1

1

θdθ = ∞(3pt)

(8)

6. (20%) The figure shows a curve C with the property that, for every point P on the middle curve y = 2x2, the area of B is twice the area of A.

P

A B y

2x2

y yx2

x )

( :x gy C

(a) Find an equation x = g(y) for C.

(b) Let R be the region bounded by the curve C, y = x2, x = 2 and y = 8. Find the volume of the solid obtained by rotating R about the x-axis.

(c) Find the y-coordinate of the centroid of R.

Solution:

(a) Assume P (t, 2t2) is a point on the curve y = 2x2. The area of A =

ˆ t 0

(2x2− x2)dx = ˆ t

0

x2dx = 1

3x3|t0 = 1 3t3 The area of B =

ˆ 2t2

0

(r y

2 − g(y))dy = 1

√2 ·2

3y32|2t02 − ˆ 2t2

0

g(y)dy

=

√2 3 (2√

2t3) − ˆ 2t2

0

g(y)dy = 4 3t3

ˆ 2t2 0

g(y)dy B = 2A ⇒

ˆ 2t2 0

g(y)dy = 2

3t3 3 pts d

dt ˆ 2t2

0

g(y)dy = d dt(2

3t3) 2 pts

By the Fundamental Theorem of Calculus, g(2t2) · 4t = 2t2 ⇒ g(2t2) = 2t Let y = 2t2 ⇒ t =r y

2 ⇒ g(y) = 1 2

r y

2. 3pts

That is, y = 8x2.

(b) Note that the point (2, 8) is on the curve y = 2x2. Sol 1.

V =

ˆ 8 0

2πy(r y 2 −1

2 r y

2)dy + ˆ 2

0

π((2x2)2− (x2)2)dx 2pts

= 2π ˆ 8

0

1 2√

2y32dy + π ˆ 2

0

3x4dx

= 1

√2π(2

5y52)|80+ π(3 · 1 5x5)|20

= 1

√2π ·2 5(128√

2) + π(3 5 · 32)

= 256

5 π + 96

5 π = 352

5 π 4pts

Sol 2. On the curve C, when y = 8 ⇒ x = 1 2

r8 2 = 1

(9)

V = ˆ 1

0

π((8x2)2 − (x2)2)dx + ˆ 2

1

π((8)2− (x2)2)dx 2pts

= π ˆ 1

0

63x4dx + π ˆ 2

1

(64 − x4)dx

= π(63

5 x5)|10+ π(64x −1 5x5)|21

= 63

5 π + (128 − 32

5 − 64 + 1

5)π = 352

5 π 4pts

(c)

The area of R = ˆ 1

0

(8x2− x2)dx + ˆ 2

1

(8 − x2)dx

= 7

3x3|10+ (8x − 1

3x3)|21 = 7

3 + 16 − 8

3− 8 + 1

3 = 8 3pts or The area of R = 3

ˆ 2 0

(2x2− x2)dx = 3(1

xx3)|20 = 3 · 8

3 = 8 3pts

Sol 1. By the Pappus Theorm, V = 2π ¯yArea. Hence ¯y = V

2πArea = (352

5 π)/(2π · 8) = 22

5 . 3pts

Sol 2.

moment = ˆ 1

0

1

2((8x2)2− (x2)2)dx + ˆ 2

1

1

2((8)2− (x2)2)dx

= 1 2 ·63

5 x5|10+1

2(64x − 1 5x5)|21

= 1 2 ·63

5 +1

2(128 − 32

5 − 64 + 1

5) = 176 5 Therefore ¯y = moment

Area = 176 5 ·1

8 = 22

5 . 3pts

(10)

7. (15%) Let the curve C defined by

 x = t2 y = t3

3 − t, t ∈ R.

(a) Find the point P where the curve intersects itself.

(b) Find the equation of the tangent lines at the point P . (c) For which values of t is the curve increasing?

(d) For which values of t is the curve concave upward?

(e) Sketch the curve C.

Solution:

(a) (3分)

假設C上的兩點為(t21,t31

3 − t1) , (t22,t32

3 − t2)。 由P 為自交點我們可以得到兩條方程式:

t21 = t22 (方程式一)

和 t31

3 − t1 = t32

3 − t2 (方程式二) 由方程式一可以得到(t1− t2)(t1+ t2) = 0,即t1 = t2或t1 = −t2

(t1 = t2不合,因為自交點的定義是不同的參數t會得到同一點)。

因此t1 = −t2。接著將t1 = −t2代入方程式二,得到

−t32

3 + t2 = t32 3 − t2 解出來可得到t2 = 0或t2 = ±√

3(t2 = 0不合,因為t2 = 0會導致t1 = t2)。 令t2 =√

3(所以t1 = −√

3),就可以得到x = 3 , y = 0,所以P = (3, 0) (註:令t2 = −√

3也可以 算出相同答案,它們是兩種不同C的參數化)。

(b) (3分)

曲線C上的每點切線斜率:

dy dx =

dy dt dx dx

= t2− 1 2t

由(a)知道切點為(3, 0),我們可以假設切線方程式為y − 0 = t2− 1

2t (x − 3),接著把從(a)算出 來的t1 , t2代入該方程式:

t = t2 =√

3 ⇒ y − 0 = (√

3)2− 1 2√

3 (x − 3) ⇒ y = 1

√3(x − 3)

t = t1 = −√

3 ⇒ y − 0 = (−√

3)2− 1 2(−√

3) (x − 3) ⇒ y = −1

√3(x − 3) 因此 y = 1

√3(x − 3) 和 y = −1

√3(x − 3) 即為該點切線方程式。

(c) (3分)

由一階檢定可知 dy

dx ≥ 0 ⇒ C 遞增,所以 dy

dx ≥ 0 ⇐⇒ t2− 1

2t ≥ 0 ⇐⇒ 2t(t2 − 1) ≥ 0但t 6= 0 ⇐⇒ t(t − 1)(t + 1) ≥ 0

(11)

但t 6= 0 ⇐⇒ t ≥ 0或 − 1 ≤ t < 0。

因此當 t ≥ 0或 − 1 ≤ t < 0 時,曲線 C 遞增。

(d) (3分)

由二階檢定可知 d2y

dx2 > 0 ⇒ C 開口向上,所以 d2y

dx2 > 0 ⇐⇒ d2y

dx2 = d(dydx) dx =

d dt(dxdy)

dx dt

> 0 ⇐⇒

d dt(dydx)

dx dt

=

(2t)2−2(t2−1) (2t)2

2t > 0

⇐⇒ t2+ 1

2t3 > 0 ⇐⇒ t3 > 0 ⇐⇒ t > 0 因此當 t > 0 時,曲線 C 開口向上。

(e) (3分)

利用(a)(b)(c)(d)來畫圖(註:可以試著把參數式寫成x和y的表示式:y2 = x3

9 − 2x2

3 + x,不難發 現它是對x軸對稱)

(12)

8. (10%)

(a) Find the points of intersection of the curves r = 1 + 2 cos θ and r2 = cos θ.

(b) Find the area of the region in the second quadrant that lies inside r2 = cos θ and outside r = 1 + 2 cos θ.

Solution:

(a)

Claim the intersection points for for polar coordinate are [0, 0], [1, 0], [1

2, ± cos−1−1 4].

Equally, for Cartesian coordinate, they are

(0, 0), (1, 0), (−1 8, ±

√15 8 ).

Part 1: the origin.

Claim [0, 0] is an intersection point.

For r = 1 + 2 cos θ, there is θ = 2π

3 such that r = 1 + 2 cos θ = 1 + 2 cos 2π 3 = 0.

For r2 = cos θ, there is θ = π

2 such that r2 = cos θ = cosπ 2 = 0.

We find that [0, 0] is on the both curves so is an intersection point.

Part 2: other points.

A point [r0, θ0] on r = 1 + 2 cos θ is also on r2 = cos θ if and only if Case 1: [r0, θ0] satisfies r2 = cos θ.

Case 2: [−r0, θ0+ π] satisfies r2 = cos θ.

Case 1:

We have

(1 + 2 cos θ0)2 = r20 = cos θ0 1 + 3 cos θ0+ 4 cos2θ0 = 0 But there is no solution for such θ0.

Case 2:

We have

(1 + 2 cos θ0)2 = r20 = (−r0)2 = cos (θ0+ π) = − cos θ0

(13)

1 + 5 cos θ0+ 4 cos2θ0 = 0 We find cos θ0 = −1, −1

4.

When cos θ0 = −1, θ0 = π and r0 = 1 + 2 cos θ0 = −1, so [r0, θ0] = [−1, π] = [1, 0].

When cos θ0 = −1

4, θ0 = ± cos−1−1

4 and r0 = 1 + 2 cos θ0 = 1 2, so [r0, θ0] = [1

2, ± cos−1−1 4].

In this, the arc cosine function is denoted as cos−1.

(b)

Observe that the boundary of the desired region are x-axis, r = −

cos θ for θ from π + cos−1−1

4 to 2π, and

r = 1 + 2 cos θ for θ from cos−1−1 4 to 2π

3 . Therefore, the area of the region is

ˆ 2π π+cos−11

4

1 2(−√

cos θ)2dθ − ˆ

3

cos−11

4

1

2(1 + 2 cos θ)2

= 1 2

ˆ 2π π+cos−114

cos θdθ − 1 2

ˆ

3

cos−114

1 + 4 cos θ + 4 cos2θdθ

= 1

2 sin θ|π+cos−114 − 1

2(θ + 4 sin θ + sin 2θ + 2θ)

3

cos−114

= 1 2

√15 4 −1

2 2√ 3 −

√3

2 + 2π −√ 15 +

√15

8 − 3 cos−1−1 4

!

= 9√ 15 16 − 3√

3

4 − π + 3

2cos−1−1 4

Criteria:

(a)

There are four criteria:

1. Explain that the origin [0, 0] point is an intersection point. 1 point.

2. Use the technique of polar coordinate to find that [1, 0] is an intersection point. 1 point.

3. Solve and find 2 intersection points for case of arc cosine. 1 point for each.

There are other situations:

1. Only write down the correct answer. 1 point.

2. Write some meaning computation but no identify any intersection point. 1 point.

(b)

1. Write down the correct integral range. 1 point for each.

2. Write down the correct integrated functions.1 point . 3. Compute this integral for first part: cos θ/2. 1 point .

4. Compute this integral for second part: (1 + 2 cos θ)2/2. 1 point . 5. Find the final answer. 1 point.

參考文獻

相關文件

When a solution curve crosses one of these lines, it has a local maximum or

(ii) for every pair of elements x 6= 1, y 6= 1 of G, let R be any rectangle in the body of the table having 1 as one of its vertices, x a vertex in the same row as 1, y a vertex in

Your result fits the correct answer: get 2pts, and get 1 pt if you just make a slight mistake3. Page 4

* For the area in part (a), 2 points will be credited if your answer differs from the correct answer only by a simple

E) heat of deposition, heat of vaporization Answer: A.. 32) The critical temperature and pressure of CS2 are 279 °C and 78 atm, respectively.. 38) If the electronic structure of a

D) regions of electron density on an atom will organize themselves so as to maximize s-character E) atomic orbitals of the bonding atoms must overlap for a bond to form.

18) Consider the general valence electron configuration of ns2np5 and the following statements:. (i) Elements with this electron configuration are expected to form

17) Consider a cell made up of two half cells consisting of the same metal in solutions of the metal ion of different concentrations.. A piece of the coffin is analyzed by