• 沒有找到結果。

v (t) t + dt→ m (t + dt

N/A
N/A
Protected

Academic year: 2022

Share "v (t) t + dt→ m (t + dt"

Copied!
9
0
0

加載中.... (立即查看全文)

全文

(1)

(Dated: June 4, June 18, July 1, 2005)

Dynamics of systems of particles and rigid body

mi → ri , i = 1,· · · , N mi

d2ri

dt2 = Fi = Fi,ext+ XN

j=1 j6=i

Fij

→X

i

mi

d2ri

dt2 =X

i

Fi,ext ∵ Fij =−Fji define:

rCM = 1 M

X

i

miri , M =X

i

mi , rCM: center of mass

→ Md2rCM

dt2 =X

i

Fi,ext = Fext total external force total momentum

ptotal=X

i

mivi = MdrCM

dt = M vCM

∴ dptotal

dt = Fext

example: rocket t→ m (t) , v (t)

t + dt→ m (t + dt) = m (t) + dm (t) , v (t + dt) = v (t) + dv (t)

∴ ptotal(t) = m (t) v (t) ptotal(t + dt) =

Ã

m (t) + dm|{z}

<0

!

(v (t) + dv) +|dm| (vrelative+ v (t))

| {z }

velocity of |dm| w.r.t. ground

∴ dptotal= ptotal(t + dt)− ptotal(t) = Fextdt→ impulse

(2)

∴ mdv (t) − dmvrel = Fextdt ; neglect the dm · dv term

∴ mdv

dt = Fext+ vrel

dm

| {z }dt

thrust

note: vrel//− v & dm dt < 0

total angular momentum Ltotal=X

i

mri× vi =X

i

ri× pi

ri = rCM+ r0i ∴ vi = vCM+ vi0 , r0i, vi0 → relative position & velocity of mi w.r.t. CM

→X

i

mir0i = 0 & X

i

mivi0 = 0

→ Ltotal= M rCM × vCM +X

i

miri0× v0i

= LCM + L0 → exists only if the system rotates w.r.t. an axis through CM with angular velocity

torque Γ Γ =X

i

Γi =X

i

ri× Fi =X

i

(rCM + ri0)× Fi

= rCM ×X

i

Fi+ X

i

r0i× Fi

| {z }

torques about CM

= ΓCM + Γ0

∵ MdvCM

dt =X

i

Fi

∴ dLCM

dt = rCM ×X

i

Fi (refer to O) dLtotal

dt =X

i

mri× dvi

dt =X

i

ri× Fi = rCM ×X

i

Fi+X

i

ri0× Fi

∴ dL0

dt =X

i

ri0× Fi (refer to CM)

Rigid body

rotation about its symmetric (principal) axis vi0 = ω× ri0 & |ri0| = const. , ICM =X

i

mi(r0i⊥)2 moment of inertia

(3)

L0 =X

i

mir0i× vi0 =X

i

miri0× (ω × ri0) =X

i

mi(ri⊥0 )2ω L0 = ICMω , ω angular velocity // the axis of rotation ICM

dt = ICMα = Γ0 a) ring with ω // central axis

|ω| = dθ

dt , dθ = ωdt→ vector ICM = M R2

θ R

CM

ωr

M

b) Disc with ω // central axis ICM = 1

2M R2 c) Solid sphere

ICM = 2 5M R2 d) Parallel axis theorem

I0 = ICM + M R2//

R//

ωr ωr'

CM

note: in general L0 ∦ ω L0 =X

i

Lii , Li =X

j

Iijωj , ω =X

j

ωjj

→ inertia tensor

(4)

Rotational Dynamics: pure rolling

ICMα = Γ0, α≡ dω

dt angular acceleration

R

CM

A

B N r

f

µ

r a r ,

CM

v r

CM

||

g β Mr

ω, α⊗

approach 1: refer to CM (noninertial reference)

ICM

dt = rCM →A× fµ → ICMα = Rfµ

M aCM = N + M g + fµ

//-comp. :b M aCM = M g sin β− fµ

⊥-comp. : 0 = N − Mg cos βb

constraint condition aCM = α· R (∵ ∆rCM = R· ∆θ ∴ vCM = R· ω)

∴ aCM = M g sin β M +ICM

R2

approach 2: refer to the contact point A (inertial reference) note: vA= vCM + v0A= 0, ∵ vA0 = ω× rCM →A=−vCM IAα = M gR sin β , IA= ICM + M R2 , aCM = αR

→ α, aCM

Note: vA= 0, vB = 2vCM (refer to inertial reference)

(5)

Physical pendulum

rCM = 2 I0 = 1

12m 2+ m µ

2

2

= 1 3m 2 Γ = rCM × mg = mg2sin θ· ¯ L = I0ω = I0

dt = I0ω· ⊗

θ

g mr

CM

O (pivod point)

2 l/

rr ωr ⊗

 equation of motion

I0

dω dt = I0

d2θ

dt2 =−mg 2sin θ for reference: simple pendulum

m d2θ

dt2 =−mg sin θ

small oscillation θ ¿ 1 sin≈ θ

∴ d2θ dt2 =−

µmg 2I0

¶ θ

∴ θ (t) = θAcos (2πνt + δ)

→ ν = 1 2π

µmg 2I0

12

= 1 2π

µ3g 2

12

Gyro.

φ ω r

p

, d

φ

β O

refer.

axis

g Mr

CM CM

r L r r r

0

, , ω

φ ˆ Γ r ,

rr

CM

(6)

LCM = ICMω0

Γ = rCM × Mg refer to O

Γ⊥ LCM ∴ LCM always changes direction only

→ LCM rotates about a vertical axis with angular frequency ωp

if ωp ¿ ω0 L≈ LCM

∵¯¯¯LCM¯¯¯ = const.

∴ dLCM

dt = ωp× LCM = rCM × Mg

→ ωp =−MgrCM

LCM

precession

precession of e in a magnetic field B0

Br0,ωrL

µrs

e

m,

Sr Γr

electron

• e ⇒ • me,−e, S, µs mass, charge, spin, magnetic moment S → angular momentum, quantized, µrs = N

S

permanent magnet; quantized both in magnitude & direction.

torque on electron Γ = µs× B0 , Γ ⊥ S

(7)

∴ dS

dt = µs× B0 ,

= ωL× S

µs =−γS , γ = e/m: gyro-magnetic ratio

→ ωL = B0γ ωL: Larmor precessional frequency total kinetic energy

Ktotal =X

i

1

2mivi2 =X

i

1

2mi(vCM + vi0)2 = 1

2M vCM2 + 1 2

X

i

mi(vi0)2

= KCM + Krot

Krot = 1 2

X

i

mi(vi0)2 =X

i

1

2mii× ri0)2 = 1

2ICM · ω2

Coupled oscillation

κ

f r

µ

O

vr

CM

R

0 xr

= x

M

A

⊗ α,−→

OA× fµ

¯ −→AO× (−κ · x)

approach 1. refer to O M aCM =−κx + fµ ICM · α = Γ =−→OA× fµ constraint condition

aCM = α· R ∵ ∆x = R∆θ , aCM = d2x

dt2 , α = d2θ dt2

∴ maCM =−κx − fµ , ICM · α = fµ· R ∴ fµ= ICM

R · α = aCMICM

R2

∴ aCM =− κ M + ICM

R

· x = − κ Mef f · x SHM

x = xAcos (2πvt + δ) , ν = 1 2π

µ κ Mef f

12

(8)

approach 2. refer to A vA= 0

IA· α =−→AO× (−κx) IA= ICM + M R2 = Mef f · R2

∴ IA· α = −R · κ · x IA

R2 d2x

dt2 =−κ · x ∴ ν = 1 2π

µ κ IA/R2

12

approach 3. conservation of mechanical energy E = 1

2M vCM2 + 1

2ICMω2+1

2κx2 = const

∵ ∆x = R · ∆θ , vCM = dx

dt , ω = dθ dt

∴ vCM = R· ω ∴ E = 1 2

µ

M +ICM

R2

vCM2 + 1

2κx2 = const

∵ dE

dt = 0 ∴ Mef f · aCM + κ· x = 0 Collision between a particle & a rigid body

O

m vr

0

CM

, l M

b

θ

A

O

( ) θ

A

= 0

ω

m

pivot

CM

conservation of L refer to O after collision m remains inside M

mv0· b = I0· ω (0) , I0 = 1

3M · 2+ m· b2 rotational inertia w.r.t. O µ

M · 2+ m· b

(1− cos θA)· g = 1

2I0· ω2(0)

Note: Force on point O 6= 0 , ∵point O is fixed constraint condition total momentum is not conserved.

(9)

Atwood Machine

1 1

,T a r r

M R

T r

2

2 2

g , a m r r g

m r

1

α r

m

2

m

1

tension of the string T1, T2

m1a1 = T1− m1g m2a2 = m2g− T2 ICM · α = (T2− T1)· R

a1 = a2 = a

α· R = a , ICM = 1 2M R2 Note: T1 6= T2

→ a = (m2− m1) g m1+ m2+ICM

R2

參考文獻

相關文件

You need to show your work to obtain

We denote V (T ) the set of all common zeros of polynomials in T, i.e.. We completes

For (b), you can use elementary geometry to prove it or using the notion of convexity/concavity of

No credit will be given for an answer without

[r]

[r]

[r]

To find the point that the curve may fail to be smooth ,we need solve dx dt = dy dt = 0 ,and there is no such