• 沒有找到結果。

R for beginners

N/A
N/A
Protected

Academic year: 2022

Share "R for beginners"

Copied!
31
0
0
顯示更多 ( 頁)

全文

(1)

1

R for beginners

Emmanue



l Paradis



1 W h



at i



s R ? 3

2 The few t hings t o know b efore start ing 5

2



.1 T h e o p e ra to r <- 5

2.2 Listing a nd d e le ting the o b je cts in me mo ry 5

2.3 The o n-line he lp 6

3



Dat a with R 8

3



.1 The ‘o b



j



e

c ts 8

3

 .2 R e a d in g d a ta fro m! fil"e s 8

3



.3 S# a $vin g d a ta 10%

3

 .4& G' e n e ra tin g d a ta 11

3



.4.1 Re g u( la r s e q) u( e nc e s 11 3



.4.2 Ra nd o m s e q) (ue nc e s 13

3



.5 Ma nip u( la ting o b je c ts 13 3



.5 .1 A* c c e s sin g a p a rtic u( l"a r v$ a l"u( e o f a n o b je c t 13

3



.5 .2 A* rith m! e tic s a n d s i!mp l" e fu( n cti on s 14&

3



.5 .3 M+ a trix, c om! p u( tatio n 16

4

-

Gr. ap/ hics with R 18

4

&

.1 M+ a n a gin g g ra p h ic w0 in d o w0 s 18 4.1.1 O1 p e ning s e v$ e ra l g ra p hic w0 ind o w0 s 18 4.1.2 Pa rtitio ning a g ra p hic w0 ind o w0 18

4.2 G' ra p hic fu( nc tio ns 192

4

&

.3 L3 ow0 -l" ev$ e l" p l"o ttin g c o m! m! a n d s 2 0%

4

&

.4& G' ra p h ic p a ra !me te rs 2 1

5 St atistical4 an5 al4y6 ses with R 23

6 The p/ rogramming langu7 age R 26

6



.1 Lo o p s a nd



c o nd



itio na l e xe c u( tio ns 26



6



.2 W8 ri



t

i



n

 g y o u( o w0 n fu( n c ti



o

n s 2 79

7

:

H; ow to go f

<

ar. th



er. wi



t

h



R ? 30

8 Index 31

(2)

2

T

=

h



e goal4 of< the p/ r. esen5 t docu7 m> en5 tis t o gi?ve a st ar. ti5ng p/ oi5ntf< or. p/ eop/ l4e n5 ewl46yi5nter. ested in5 R. I@ t

 ried to simp/ lify6 as mu7 ch as I cou7 ld t he exp/ lanat ions to make t hem u7 nderst andab les b y6 all, while giv? ing u7 sefu7 l details, somet imes wit h tab les. Commands, inst ru7 ct ions and examp/ les are written in CouA rier font.

I t hank JB 7ulien Clau7 de, Christ op/ he Declercq, Friedrich Leisch and Mat hieu7 Ros for t heir comment s and su7 ggest ions on an earlier v? ersion of this docu7 ment. I am also grat efu7 l t o all the memb ers of t he R Dev? elop/ ment Core Team for t heir considerab le effort s in dev? elop/ ingRand animat ing t he discu7 ssion list ‘r-help/ ’. Thanks also t o t he R u7 sers whose qu7 est ions or comment s help/ ed me to writ e “R for b eginners”.

© 2000, EC >m>man5 7uel

4

PD ar. adi



s (20 octob



r

. e 2000)

(3)

3

1 W

E

ha

F

t

G

is

H

R ?

R is a statistical analy6 sis sy6 st em created b y6 Ross Ihaka & Rob ert Gent leman (1996, JI . ComJ Kput. GraL KphM . SN taL t., 5: 299-314). Ris b ot h a langu7 age and a software; it s most remarkab le feat7ures are:

• an5 ef

<

f

<

ect i



v

? e data h



an5 dl

4

i



n

5 g an5 d st or. age f

<

aci



l

4

i



t

 y6 ,

• a su7 ite of< op/ er. at or. s f< or. cal4 cu7 4lation5 s on5 ar. .ray6 s, m> at.rices, an5 d ot h er. com> /p4lexO op/ er. ation5 s,

• a large, coherent , int egrated collect ion of t ools for st at ist ical analy6 sis,

• nu7 merou7 s grap/ hical facilities which are p/ articu7 larly6 flexib le, and

• a simp/ le and effect iv? e p/ rogramming langu7 age which inclu7 des many6 facilit ies.

R is a l4 an5 gu7 age con5 si der. ed as a di al4 ect of< the l4an5 gu7 age S cr. eat ed b y6 the AP =T&T= QBel44l L

R ab or. ator. ies. S i s av? ai l4 ab l4 e as t h e sof< twar. e S-PD LR US S com> m> er. ci al4 i zed b y6 MT at h Sof< t (see h



t

 t p/ :/U /U www.sp/ l4 u7 s.m> at h sof< t .com> /U f< or. m> or. e in5 f< or. m> at i on5 ). T= h er. e ar. e i m> p/ or. tan5 ts di f< f< er. en5 ces i n5 t

 he concep/ t ions of R and S, b



u

7 t t hey6 are not of int erest t o u7 s here: t hose who want t o know more on t his p/ oint can read the p/ ap/ er b 6y Gent leman & Ihaka (1996) or t he R-FAQ (htt/p:/UU/cran.r-p/ rojV ect .org/Udoc/UFAQ/UR-FAQ.ht ml), a cop/ y6 of which is alse dist rib 7uted wit h t he soft ware.

R is f< .reel4y6 di st.rib7uted on5 th e t er. >ms of< the GNW US DP7ub4lic LR icen5 ce of< the FX .ree Sof<twar. e F

X

ou7 5ndation5 (f< or. >mor. e i5n<for. >mation5 : h tt/p:/U/Uwww.gn5 7u.or. g/U ); its dev? el4 op/ >men5 tan5 d di st.rib7ution5 ar. e carried on b



y

6 sev? eral st at ist icians known as t he R Dev? elop/ ment Core Team. A key6 -element in t

 his dev? elop/ ment is t he Comp/ rehensiv? e R Archiv? e NW et work (CRANW ).

R is av? ailab le in sev? eral forms: t he sou7 rces writt en in C (and some rou7 tines in Fort ran77) ready6 to b e comp/ iled, essent ially6 for US nix and Linu7 x machines, or some b inaries ready6 for u7 se (af< ter. a v? er. y6 easy6 in5 stal4 l4at ion5 ) accor. di5ng t o th e f< ol44lowi5ng t ab 4le.

ArcY hitZ e[ cY tZu\ re[ O] p^ e[ ra_ tZing` sa yb sa tZe[ m(csa )d I

e

n

 te l" W8 in d o w0 s 92 5 /f92 8 /fNg T 4& .0% /f2 0% 0% 0%

L

3

i



n

 u( x, (hDi e b ia n 2 .2 ,j M+ a n d ra kk e 79 .1,j R e d Hl a t

6



.x,j S# u( S# e 5 .3 /f6.4/f97.0% )m P

n

P

n

C

o

M

+

a

 c O1 S#

Linu( xPPCo 5 .0% Alp ha S# y ste ms Dig ita l Up nix 4.0%

Linu( x (hRe d Ha t 6 .x)m S

#

p

a rc Linu( x (hRe d



Ha t 6



.x)m

T

=

h



e f< i4les t o i n5 stal4 l4 these b in5 ar. ies ar. e at h ttp/ :/U/U cr. an5 .r. -p/ .rojV ect .or. g/Ubi5nU/(exO cep/ t<for. the MT aci5ntosh v

? ersion 1) where y6 ou7 can find t he inst allat ion instru7 ctions for each op/ erating sy6 st em as well.

R is a langu7 age wit h many6 fu7 nct ions for st at ist ical analy6 ses and grap/ hics; t he latter are v

? isu7 alized immediat ely6 in their own window and can b e sav? ed in v? ariou7 s format s (for exO am> /p4le, jV /pg, p/ 5ng, b m> p/ , ep/ s, or. wm> f< u7 n5 der. Win5 dows, p/ s, b >mp/ , p/ ict exO 7u5nder. SU5niOx). T= h e r

. esu7 l4 t s f< r. om> a statist i cal4 an5 al4 y6 si s can5 b e disp/ l4ay6 ed on5 t h e scr. een5 , som> e i n5 t er. m> edi at e r. esu7 l4 t s (Pq -v? al47ues, r. egr. essi on5 coef< <fici en5 ts) can5 be wr. itten5 i5na f< i4le or. 7used i5nsu7 bsequ7 en5 tan5 al46yses. T= heR l

4

an5 gu7 age al4l4ows th e u7 ser. , f< or. in5 st an5 ce, t o p/ .rogr. am> l4oop/ s of< com> >man5 ds t o su7 ccessi?vel46yan5 al46yse

1 T h e M+ a c in to s h p o rt o f Rr h a s j u( s t b e e n fin is h e d b y S# t efa n o Ieac u( s <s jag o@m! c l"in kk .it>t ,j a nd s h o u( l"d b e a $va il"a b l"e s

 o o n o n Co R A* Ng .

(4)

4

sev? eral dat a set s. It is also p/ ossib



le t o comb



ine in a single p/ rogram different st at ist ical f

<

u

7 n5 ct i on5 s to p/ er. f< or. m> m> or. e com> p/ l4 exO an5 al4 y6 ses. T= h e R u7 ser. s m> ay6 b en5 ef< i t of< a l4ar. ge n5 u7 m> b er. of<

r

. ou7 t i n5 es wr. i t t en5 f< or. San5 d av? ai l4 ab l4 e on5 in5 ter. n5 et (f< or. exO am> p/ l4e: h t tp/ :/U/Ustat.cm> u7 .edu7 /US/U), m> ost of<

t

 h ese r. ou7 tin5 es can5 b e u7 sed di r. ect l4 y6 wi t h R.

A

P t f< ir. st, R cou7 l4 d seem> too com> p/ l4 exO f< or. a n5 on5 -sp/ eci al4 i st (f< or. in5 stan5 ce, a b i ol4 ogi st ). T= h i s m> ay6 n

5 ot b e t r. u7 e act u7 al4 l4 y6 . I@ n5 f< act , a p/ r. om> i n5 en5 t f< eat u7 r. e of< R i s i t s f< l4 exO i b i l4 i t y6 . W h er. eas a cl4 assi cal4 sof< twar. e (SAP S, SPD SS, Statistica, ...) di sp/ 4lay6 s (al4m> ost ) al44lthe r. esu7 4lts of< an5 an5 al46ysi s,R stor. es t

 hese resu7 lt s in an obju ect, so t hat an analy6 sis can b e done with no resu7 lt disp/ lay6 ed. The u7 ser may6 b e su7 rp/ rised b 6ythu7 s, b 7utsu7 ch a feat7ure is v? ery6 7usefu7 l. Indeed, t he u7 ser can ext ract only6 t

 he p/ art of t he resu7 lt s which is of int erest . For examp/ le, if one ru7 ns a series of 20 regressions an5 d wan5 ts t o com> /par. e the di<f<fer. en5 t .regr. ession5 coef< f< icien5 ts, R can5 di sp/ 4lay6 on5 4l6ythe esti>mat ed coef< <fici en5 ts: th7us the r. esu7 l4t s wil44ltakv e 20 l4 in5 es, wh er. eas a cl4 assi cal4 sof< twar. e cou7 l4d wel4 l4 op/ en5 20 r. esu7 4lts wi n5 dows. On5 e cou7 4ld cite m> an5 6y oth er. exO am> p/ l4es il44l7ust.rati5ng the su7 /per. ior. ity6 of< a sy6 st em> su7 ch



asR com> /par. ed t o cl

4

assi



cal

4

sof

<

t

 war. es; I@ h



op/ e th



e r. eader. wi



l

4

l

4

b



e con5 ?vi



n

5 ced of

<

t

 h



i



s af< ter. r. eadi5ng th is docu7 >men5 t.

參考文獻

相關文件

- In the current lesion, the epithelioid cells were positive for S100 protein and no sustentacular cells were identified, effectively ruling out PGL as the diagnosis. -

Later, we will relate the φ-fixed ideals with the ideals coming from a resolution of singularities in characteristic 0 (e.g. multiplier ideals, Fujino’s non-LC ideal, and the

與 V.-ing 當主詞時視為 做一件事情,因此後面接單數 動詞 ( ※ 注意如遇到助動詞,動詞則保持 原形 ).. • To study English makes

In attempting to generalize this function, we recall that interchanging two rows of a matrix changes the sign of its determinant.. This suggests the

• A conditional jump instruction branches to a label when specific register or flag conditions are met.

Weak solution for problems with shock &amp; rarefaction waves Interface indicator H I takes value zero away from interfacs, yielding standard compressible Euler equations

Quantitative uniqueness of solutions to second order elliptic equations with singular lower order terms.. Quantitative uniqueness of solutions to second order elliptic equations

The Seed project, REEL to REAL (R2R): Learning English and Developing 21st Century Skills through Film-making in Key Stage 2, aims to explore ways to use film-making as a means

反之, 有了 parametric equation, 我們可利用這些在 R n 的 direction vectors, 利 用解聯立方程組的方法求出和這些 direction vectors 垂直的 normal vectors,

而利用 row vectors 的方法, 由於可以化為 reduced echelon form, 而 basis 是由此 reduced echelon form 中的 nonzero vectors 所組成, 所以雖然和來的 spanning

We point out that extending the concepts of r-convex and quasi-convex functions to the setting associated with second-order cone, which be- longs to symmetric cones, is not easy

Hence, we have shown the S-duality at the Poisson level for a D3-brane in R-R and NS-NS backgrounds.... Hence, we have shown the S-duality at the Poisson level for a D3-brane in R-R

We compare the results of analytical and numerical studies of lattice 2D quantum gravity, where the internal quantum metric is described by random (dynamical)

 依序填入該學生社團負責人之相關資訊,並於下方

 童書有很豐富的內容,可教的東西很 多,成人可以因應兒童的興趣隨機施

 Compute the resource consumption o f an internal node as follows:. ◦ Find the demanding child with minimum dominant share

MASS::lda(Y~.,data) Linear discriminant analysis MASS::qda(Y~.,data) Quadratic Discriminant Analysis class::knn(X,X,Y,k,prob) k-Nearest Neighbour(X 為變數資料;Y 為分類)

[r]

(A) For deceleration systems which have a connection link or lanyard, the test weight should free fall a distance equal to the connection distance (measured between the center line

在棱上的位置无关 &amp;.

“Data science is an interdisciplinary field of scientific methods, processes, algorithms and systems to extract knowledge or insights from data in various forms, either structured

Using R for Data Management, Statistical Analysis,

16 The major current feature of the Southern Ocean is the Antarctic Circumpolar Current (ACC) which, by virtue of its great depth, has an enormous volume