The Complexity of the Network Design Problem
D.S. Jihnson, J.K. Lenstra, A.H.G. Rinnooy Kan
1
R99922005 黃博平 R99922041 陳彥璋 R99922017 林君達
R00922156 陳子筠
R00922157 李庚謙
R00944050 王舜玄
R00922102 張庭耀
Introduction P and NP
Network Design Problem (NDP) KNAPSACK and NDP
SNDP is NP-complete Proof of SNDP
Conclusion
Outline
2
Introduction
R00944050 王舜玄
3
Why we use computer?
Solve computational problems!
pure theoretical CS applied Mathematics
Introduction
4
For some specific purposes:
Optimization-
define energy/cost/
profit... functions Maximize/minimize them
Introduction
5
Opt. Examples:
Shortest path
Traveling salesman Texture synthesis Photo cuts
Introduction
6
Opt. Examples:
Shortest path
Traveling salesman Texture synthesis Photo cuts
Introduction
6
We just met this man in midterm!
Shortest path:
weighted graph
directed/undirected Bellman–Ford/
Dijkstra
Introduction
7
Texture synthesis:
define energy functions overlap and immerse texture patches
computed by energy function minimization
Introduction
8
Photo cuts:
define energy function combine photos for panorama purpose computed by energy function minimization
Introduction
9
Network Design Problem given a undirected graph find subgraph connects all vertices
minimize sum of shortest path weights
subject to budget constraint
Introduction
10
This paper try to:
show NP-completeness of NDP even for special case:
all edge weights are equal and budget restricts to spanning tree
Introduction
11
The result implies:
construct similar algorithms for other combinatorial problems
traveling salesman problem multi-commodity network flow problem
none are solvable in poly-time
Introduction
12
The result implies:
construct similar algorithms for other combinatorial problems
traveling salesman problem multi-commodity network flow problem
none are solvable in poly-time
Introduction
12
Discuss more precisely later
In the rest of this presentation, we are going to:
Demonstrate what’s P and NP.
Give formal definition for Network Design Problem(NDP).
Discuss relation between NDP and KNAPSACK.
Prove NDP and SNDP is NPC.
Introduction
13
Introduction P and NP
Network Design Problem (NDP) KNAPSACK and NDP
SNDP is NP-complete Proof of SNDP
Conclusion
Outline
14
P and NP
R99922017 林君達
15
A simple machine conceptually exists for computation.
Almost every
computation model can be transformed to Turing Machine.
What is Turing Machine anyway ?
16
Take a closer look on the main difference between these two types.
(Transition Functions and Transition Relations)
Deterministic and Non-deterministic
17
Take a closer look on the main difference between these two types.
(Transition Functions and Transition Relations)
Deterministic and Non-deterministic
17
Take a closer look on the main difference between these two types.
(Transition Functions and Transition Relations)
Deterministic and Non-deterministic
17
A common misunderstanding
Polynomial Time v.s. Non-Polynomial Time
P vs NP
A Common misunderstanding
Polynomial Time v.s. Non-Polynomial Time A Common misunderstanding
Polynomial Time v.s. Non-Polynomial Time
18
A common misunderstanding
Polynomial Time v.s. Non-Polynomial Time
P vs NP
A Common misunderstanding
Polynomial Time v.s. Non-Polynomial Time A Common misunderstanding
Polynomial Time v.s. Non-Polynomial Time
18
What’s reduction for?
we say “A reduce to B” if there exists a transformation R which , this prove problem B is “at least hard as ” problem A
Example: 3-coloring reduce to 4-coloring
Reduction
x ∈A ⇔ R(x) ∈B
3-coloring 4-coloring
19
What’s reduction for?
we say “A reduce to B” if there exists a transformation R which , this prove problem B is “at least hard as ” problem A
Example: 3-coloring reduce to 4-coloring
Reduction
x ∈A ⇔ R(x) ∈B
3-coloring 4-coloring
19
What’s reduction for?
we say “A reduce to B” if there exists a transformation R which , this prove problem B is “at least hard as ” problem A
Example: 3-coloring reduce to 4-coloring
Reduction
x ∈A ⇔ R(x) ∈B
3-coloring 4-coloring
19
Reduction must be polynomial to
prevent paradox
Reduction - Paradox
20
We call a problem X is NP-hard if all the problems in the NP can be reduced to X.
In addition, if X belongs to NP, X is NP-complete.
This also applied to the P-hard and P-complete.
P-hard, NP-hard, NP-complete
21
Examples of P and NP
22
Examples of P and NP
22
NPC examples
Hamiltonian path Vertex cover
Integer linear programming 3-satisfiability
Examples
P examples
Circuit Value Problem (CVP)
Linear programming
23
Introduction P and NP
Network Design Problem (NDP) KNAPSACK and NDP
SNDP is NP-complete Proof of SNDP
Conclusion
Outline
24
Network Design Problem (NDP)
R99922005 黃博平
25
NDP
Goal : NDP is NP-complete Step 1 : NDP is in NP
Step 2 : Reduce a NP-complete problem to NDP
26
NDP(cont.)
NETWORK DESIGN PROBLEM(NDP):
Given an undirected graph G=(V,E), a weight function L:E->N, a budget B and a criterion
threshold C(B,C N), does there exist a subgraph G’=(V,E’) of G with weight and
criterion value F(G’)<=C
where F(G’) denotes the sum of the weights of the shortest paths in G’ between all vertex pairs?
!"#$%&'()*
• !+,-./0*"+123!*#/.45+6$!"#)7*
* 389:'*;'*<'=8>:%(:=*?>;@A*3B$CD+)D;*E:8?A(*F<'%(8&'*
57+GH!*D*;*I<=?:(*4*;'=*;*%>8(:>8&'*(A>:JA&K=**
****L$4DL****!)*D*=&:J*(A:>:*:M8J(*;*J<I?>;@A*3NB$CD+N)*&F*3*
E8(A*E:8?A(***************************;'=*%>8(:>8&'*9;K<:*
O$3N)PBL*D*EA:>:*O$3N)*=:'&(:J*(A:*J<Q*&F*(A:*
E:8?A(J*&F*(A:*JA&>(:J(*@;(AJ*8'*3N*I:(E::'*;KK*9:>(:M*
@;8>JR*
B
E j
i
j i
L
¦
} ' ,{
}) , ({
!"#$%&'()*
• !+,-./0*"+123!*#/.45+6$!"#)7*
* 389:'*;'*<'=8>:%(:=*?>;@A*3B$CD+)D;*E:8?A(*F<'%(8&'*
57+GH!*D*;*I<=?:(*4*;'=*;*%>8(:>8&'*(A>:JA&K=**
****L$4DL****!)*D*=&:J*(A:>:*:M8J(*;*J<I?>;@A*3NB$CD+N)*&F*3*
E8(A*E:8?A(***************************;'=*%>8(:>8&'*9;K<:*
O$3N)PBL*D*EA:>:*O$3N)*=:'&(:J*(A:*J<Q*&F*(A:*
E:8?A(J*&F*(A:*JA&>(:J(*@;(AJ*8'*3N*I:(E::'*;KK*9:>(:M*
@;8>JR*
B
E j i
j i
L
¦
} ' ,{
}) , ({
27
Weighted Graph G
8
8
2 2
9 1 2
8
8
5 8
6
!"#$%&'()*
• +,-./(,0*1234/*1*
5*
5*
6* 6*
7* 8* 6*
5*
5*
9* 5*
:*
!"#$%&'()*
• +,-./(,0*1234/*1*
5*
5*
6* 6*
7* 8* 6*
5*
5*
9* 5*
:*
NDP(cont.)
28
Weighted Graph G
8
8
2 2
9 1 2
8
8
5 8
6
!"#$%&'()*
*
+*
+*
,* ,*
-* .* ,*
+*
+*
/* +*
0*
NDP(cont.)
29
Now guess and verify!!
8
8
2 2
9 1 2
8
8
5 8
6
!"#$%&'()*
• !&+*,-.//*0'1*2.345677*
8*
8*
9* 9*
:* ;* 9*
8*
8*
<* 8*
=*
*
!"#$%&"#$$*
'(()*+,
-).)(+, '(()*+,
-).)(+,
-).)(+,
!"#$%&'()*
• !&+*,-.//*0'1*2.345677*
8*
8*
9* 9*
:* ;* 9*
8*
8*
<* 8*
=*
*
!"#$%&"#$$*
'(()*+,
-).)(+, '(()*+,
-).)(+,
-).)(+,
NDP(cont.)
30
Now guess and verify!!
8
8
2 2
9 1 2
8
8
5 8
6
!"#$%&'()*
• !&+*,-.//*0'1*2.345677*
8*
8*
9* 9*
:* ;* 9*
8*
8*
<* 8*
=*
*
!"#$%&"#$$*
'(()*+,
-).)(+, '(()*+,
-).)(+,
-).)(+,
!"#$%&'()*
• !&+*,-.//*0'1*2.345677*
8*
8*
9* 9*
:* ;* 9*
8*
8*
<* 8*
=*
*
!"#$%&"#$$*
'(()*+,
-).)(+, '(()*+,
-).)(+,
-).)(+,
NDP(cont.)
31
NDP is in NP NP-complete?
Reduce Knapsack problem to NDP
NDP(cont.)
32
Knapsack problem
n items(T={1,2,3,4,5,6,….,t}) Item x has value and weight Given V and W
Does there exist a subset S T such that and ?
!"#$%#&'($)*+,-.(
• "(/0-.%123456768696:6;6<=60>?(
• @0-.(A(B#%(C#,D-(((((((#"E(F-/GB0(
• H/C-"(I(#"E(J(
• K*-%(0B-)-(-A/%0(#(%D+%-0(L((((((((2(%D&B(0B#0(
( ((((((((((((((((((#"E((((((((((((((((((((((((M(
( (
v
xw
x
W w
S i
i
¦
V v
S i
i !
¦
!"#$%#&'($)*+,-.(
• "(/0-.%123456768696:6;6<=60>?(
• @0-.(A(B#%(C#,D-(((((((#"E(F-/GB0(
• H/C-"(I(#"E(J(
• K*-%(0B-)-(-A/%0(#(%D+%-0(L((((((((2(%D&B(0B#0(
( ((((((((((((((((((#"E((((((((((((((((((((((((M(
( (
v
xw
x
W w
S i
i
¦
V v
S i
i !
¦
!"#$%#&'($)*+,-.(
• "(/0-.%123456768696:6;6<=60>?(
• @0-.(A(B#%(C#,D-(((((((#"E(F-/GB0(
• H/C-"(I(#"E(J(
• K*-%(0B-)-(-A/%0(#(%D+%-0(L((((((((2(%D&B(0B#0(
( ((((((((((((((((((#"E((((((((((((((((((((((((M(
( (
v
xw
x
W w
S i
i
¦
V v
S i
i !
¦
!"#$%#&'($)*+,-.(
• "(/0-.%123456768696:6;6<=60>?(
• @0-.(A(B#%(C#,D-(((((((#"E(F-/GB0(
• H/C-"(I(#"E(J(
• K*-%(0B-)-(-A/%0(#(%D+%-0(L((((((((2(%D&B(0B#0(
( ((((((((((((((((((#"E((((((((((((((((((((((((M(
( (
v
xw
x
W w
S i
i
¦
V v
S i
i !
¦
!"#$%#&'($)*+,-.(
• "(/0-.%123456768696:6;6<=60>?(
• @0-.(A(B#%(C#,D-(((((((#"E(F-/GB0(
• H/C-"(I(#"E(J(
• K*-%(0B-)-(-A/%0(#(%D+%-0(L((((((((2(%D&B(0B#0(
( ((((((((((((((((((#"E((((((((((((((((((((((((M(
( (
v
xw
x
W w
S i
i
¦
V v
S i
i !
¦
33
Example
0.5kg, 200NT
5kg,100NT 80kg,6000NT
0.6kg, 22NT
1200kg, 700000NT
給我去偷價 值超過 10000NT
的東西!!
我只能舉 100KG
T_T
34
Example
0.5kg, 200NT
5kg,100NT 80kg,6000NT
0.6kg, 22NT
1200kg, 700000NT
給我去偷價 值超過 10000NT
的東西!!
我只能舉 100KG
T_T
34
Example
0.5kg, 200NT
5kg,100NT 80kg,6000NT
0.6kg, 22NT
1200kg, 700000NT
我只能舉 100KG
T_T
可憐你,超 過1000NT
就好!!
35
Example
0.5kg, 200NT
5kg,100NT 80kg,6000NT
0.6kg, 22NT
1200kg, 700000NT
我只能舉 100KG
T_T
可憐你,超 過1000NT
就好!!
35
Knapsack problem (another def.)
• W = V
• = for x=1,2,…..t
!"#$%#&'($)*+,-./#"*01-)(2-34"404*"5(
• (678(
• (((((((7((((((((((3*)(97:;<;=>>0(
( (
v
xw
x!"#$%#&'($)*+,-./#"*01-)(2-34"404*"5(
• (678(
• (((((((7((((((((((3*)(97:;<;=>>0(
( (
v
xw
x36
Knapsack problem (another def.)
• n items(T={1,2,3,4,5,6,….,t})
• Item i has value
• Given b
• Does there exist a subset S T such that
• ?
!"#$%#&'($)*+,-./#"*01-)(2-34"404*"5(
• "(40-.%/6789:;:<:=:>:?:@A:0B5(
• C0-.(4(1#%(D#,E-(
• F4D-"(+(
• G*-%(01-)-(-H4%0(#(%E+%-0(I((((((((6(%E&1(01#0(
( ( ((((((((J(
( (
b a
S i
¦
i
a
i!"#$%#&'($)*+,-.(
• "(/0-.%123456768696:6;6<=60>?(
• @0-.(A(B#%(C#,D-(((((((#"E(F-/GB0(
• H/C-"(I(#"E(J(
• K*-%(0B-)-(-A/%0(#(%D+%-0(L((((((((2(%D&B(0B#0(
( ((((((((((((((((((#"E((((((((((((((((((((((((M(
( (
v
xw
x
W w
S i
i
¦
V v
S i
i !
¦
!"#$%#&'($)*+,-./#"*01-)(2-34"404*"5(
• "(40-.%/6789:;:<:=:>:?:@A:0B5(
• C0-.(4(1#%(D#,E-(
• F4D-"(+(
• G*-%(01-)-(-H4%0(#(%E+%-0(I((((((((6(%E&1(01#0(
( ( ((((((((J(
( (
b a
S i
¦
i
a i
37
Knapsack problem
• Knapsack problem is NP-complete
Knapsack
problem NDP
Polynomial-time reducible
38
Introduction P and NP
Network Design Problem (NDP) KNAPSACK and NDP
SNDP is NP-complete Proof of SNDP
Conclusion
Outline
39
KNAPSACK & NDP
R99922041 陳彥璋
40
A KNAPSACK Example
There is a solution =>
!"#$!%&!'#"()*+,-."
/"0"1" 2"0"3"
*4"5"*6"0"7"5"8"0"3"
9:.;."<="*"=>-?/<>@"֜"
!"#$!%&!'#"()*+,-."
/"0"1" 2"0"3"
*4"5"*6"0"7"5"8"0"3"
9:.;."<="*"=>-?/<>@"֜"
41
KNAPSACK => NDP
KNAPSACK
NDP
!"#$%#&!'֜'"($'
!"#$%#&!'
"($'
)*+,-*'
!"#$%#&!'֜'"($'
!"#$%#&!'
"($'
)*+,-*'
!"#$%#&!'֜'"($'
!"#$%#&!'
"($'
)*+,-*'
42
KNAPSACK => NDP
KNAPSACK
NDP
!"#$%#&!'֜'"($'
!"#$%#&!'
"($'
)*+,-*'
!"#$%#&!'֜'"($'
!"#$%#&!'
"($'
)*+,-*'
!"#$%#&!'֜'"($'
!"#$%#&!'
"($'
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
)'*'+,'
!"#$%#&!'֜'"($'
!"#$%#&!'
"($'
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
)'*'+,'
43
KNAPSACK => NDP
KNAPSACK
NDP
!"#$%#&!'֜'"($'
!"#$%#&!'
"($'
)*+,-*'
!"#$%#&!'֜'"($'
!"#$%#&!'
"($'
)*+,-*'
!"#$%#&!'֜'"($'
!"#$%#&!'
"($'
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
)'*'+,'
!"#$%#&!'֜'"($'
!"#$%#&!'
"($'
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
)'*'+,'
44
KNAPSACK => NDP
KNAPSACK
NDP
!"#$%#&!'֜'"($'
!"#$%#&!'
"($'
)*+,-*'
!"#$%#&!'֜'"($'
!"#$%#&!'
"($'
)*+,-*'
!"#$%#&!'֜'"($'
!"#$%#&!'
"($'
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
)'*'+,'
!"#$%#&!'֜'"($'
!"#$%#&!'
"($'
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
)'*'+,'
45
KNAPSACK => NDP
KNAPSACK
NDP
!"#$%#&!'֜'"($'
!"#$%#&!'
"($'
)*+,-*'
!"#$%#&!'֜'"($'
!"#$%#&!'
"($'
)*+,-*'
!"#$%#&!'֜'"($'
!"#$%#&!'
"($'
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
)'*'+,'
!"#$%#&!'֜'"($'
!"#$%#&!'
"($'
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
)'*'+,' -'
-' -'
46
KNAPSACK => NDP
KNAPSACK
NDP
!"#$%#&!'֜'"($'
!"#$%#&!'
"($'
)*+,-*'
!"#$%#&!'֜'"($'
!"#$%#&!'
"($'
)*+,-*'
!"#$%#&!'֜'"($'
!"#$%#&!'
"($'
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
)'*'+,'
!"#$%#&!'֜'"($'
!"#$%#&!'
"($'
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
)'*'+,' -'
-' -' .'
.'
.' /'
/'
/' 0'
0'
0'
47
KNAPSACK => NDP
KNAPSACK
NDP
!"#$%#&!'֜'"($'
!"#$%#&!'
"($'
)*+,-*'
!"#$%#&!'֜'"($'
!"#$%#&!'
"($'
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
)'*'+,'
!"#$%#&!'֜'"($'
!"#$%#&!'
"($'
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
)'*'+,' -'
-' -' .'
.'
.' /'
/'
/' 0'
0'
0'
!"#$%#&!'֜'"($'
!"#$%#&!'
"($'
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
)'*'+,' -'
-' -' .'
.'
.' /'
/'
/' 0'
0'
0'
48
Solve NDP
!"#$%#&!'֜'"($'
!"#$%#&!'
"($'
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
)'*'+,' -'
-' -' .'
.'
.' /'
/'
/' 0'
0'
0'
!"#$%&'()&
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
*&+&,-&
.&
.& .&
/&
/&
/&
0&
0&
0&
1&
1&
1&
!"#$%&'()&
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
*&+&,-&
.&
.& .&
/&
/&
/&
0&
0&
0&
1&
1&
1&
49
Solve NDP
Any feasible solution can be assumed to
contain the star graph.
!"#$%&'()&
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
*&+&,-&
.&
.& .&
/&
/&
/&
0&
0&
0&
1&
1&
1&
!"#$%&'()&
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
*&+&,-&
.&
.& .&
/&
/&
/&
0&
0&
0&
1&
1&
1&
!"#$%&'()&
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
*&+&,-&
.&
.& .&
/&
/&
/&
0&
0&
0&
1&
1&
1&
234&5%6789#%&7"#:;8"3&<63&9%&
677:=%>&;"&<"3;683&;?%&7;6@&
A@6B?C&&
50
Solve NDP
Any feasible solution can be assumed to contain the star graph.
!"#$%&'()&
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
*&
*&
+&
+&
,&
,&
-&
-&
./0&1%2345#%&3"#674"/&82/&5%&23369%:&7"&8"/724/&7;%&372<&=<2>;?&&
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
*& *&
+&
+&
,&
,&
-&
-&
@"7;&8"/369%&329%&56:=%7A&567&7;%&8<47%<4"/&$2#6%&"1&<4=;7&"/%&43<=%<B&
51
Solve NDP !"#$%&'()&
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
*&+&,-&
.&
.& .&
/&
/&
/&
0&
0&
0&
1&
1&
1&
!"#$%&'()&
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
*&+&,-&
.&
.& .&
/&
/&
/&
0&
0&
0&
1&
1&
1&
!"#$%&'()&
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
*+,&
-& -&
.&
.&
/&
/&
0&
0&
52
Solve NDP !"#$%&'()&
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
*&+&,-&
.&
.& .&
/&
/&
/&
0&
0&
0&
1&
1&
1&
!"#$%&'()&
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
*&+&,-&
.&
.& .&
/&
/&
/&
0&
0&
0&
1&
1&
1&
!"#$%&'()&
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
*+,&
-& -&
.&
.&
/&
/&
0&
0&
!"#$%&'()&
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
*+,&
-& -&
.&
.&
/&
/&
0&
0&
!12&"3&4%5678,&&-9&:&.-&
;<58%<5"=&$>#1%,&?89&:&-/0&
53
Solve NDP !"#$%&'()&
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
*&+&,-&
.&
.& .&
/&
/&
/&
0&
0&
0&
1&
1&
1&
!"#$%&'()&
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
*&+&,-&
.&
.& .&
/&
/&
/&
0&
0&
0&
1&
1&
1&
!"#$%&'()&
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
*+,&
-& -&
.&
.&
/&
/&
0&
0&
!12&"3&4%5678,&&-9&:&.-&
;<58%<5"=&$>#1%,&?89&:&-/0&
<"185=6&#">@&
!"#$%&'()&
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
*+,&
-& -&
.&
.&
/&
/&
0&
0&
!12&"3&4%5678,&&-9&:&.-&
;<58%<5"=&$>#1%,&?89&:&-/0&
<"185=6&#">@&
54
Solve NDP !"#$%&'()&
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
*&+&,-&
.&
.& .&
/&
/&
/&
0&
0&
0&
1&
1&
1&
!"#$%&'()&
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
*&+&,-&
.&
.& .&
/&
/&
/&
0&
0&
0&
1&
1&
1&
!"#$%&'()&
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
*+,&
-& -&
.&
.&
/&
/&
0&
0&
!12&"3&4%5678,&&-9&:&.-&
;<58%<5"=&$>#1%,&?89&:&-/0&
!"#$%&'()&
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
*+,&
-& -&
.&
.&
/&
/&
0&
0&
!12&"3&4%5678,&&-9&:&.-&
;<58%<5"=&$>#1%,&?89&:&-/0&
55
Solve NDP !"#$%&'()&
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
*&+&,-&
.&
.& .&
/&
/&
/&
0&
0&
0&
1&
1&
1&
!"#$%&'()&
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
*&+&,-&
.&
.& .&
/&
/&
/&
0&
0&
0&
1&
1&
1&
!"#$%&'()&
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
*+,&
-& -&
.&
.&
/&
/&
0&
0&
!12&"3&4%5678,&&-9&:&.-&
;<58%<5"=&$>#1%,&?89&:&-/0&
!"#$%&'()&
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
*+,&
-& -&
.&
.&
/&
/&
0&
0&
!12&"3&4%5678,&&-9&:&.-&
;<58%<5"=&$>#1%,&?89&:&-/0&
@@@@@@@@@@@@@@@@@@&
&&&&&&&&&&&&&&&&&&&-&
56
Solve NDP !"#$%&'()&
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
*&+&,-&
.&
.& .&
/&
/&
/&
0&
0&
0&
1&
1&
1&
!"#$%&'()&
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
*&+&,-&
.&
.& .&
/&
/&
/&
0&
0&
0&
1&
1&
1&
!"#$%&'()&
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
*+,&
-& -&
.&
.&
/&
/&
0&
0&
!12&"3&4%5678,&&-9&:&.-&
;<58%<5"=&$>#1%,&?89&:&-/0&
!"#$%&'()&
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
*+,&
-& -&
.&
.&
/&
/&
0&
0&
!12&"3&4%5678,&&&&&-9&&&&:&.-&
&&&&&&&&&&&&&;1<6%8,&-9&=&>&:&.?&
&&&&&&&@A58%A5"B&$C#1%,&&&&D89&&&&:&-/0&
@A58%A5"B&87A%E7"#<,&D89&F&>&:&-D?&
57
Solve NDP !"#$%&'()&
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
*&+&,-&
.&
.& .&
/&
/&
/&
0&
0&
0&
1&
1&
1&
!"#$%&'()&
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
*&+&,-&
.&
.& .&
/&
/&
/&
0&
0&
0&
1&
1&
1&
!"#$%&'()&
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
*+,&
-& -&
.&
.&
/&
/&
0&
0&
!12&"3&4%5678,&-9&:&-&;&.-&;&.<&
&&&&&&&&&&&&&=1>6%8,&-9&:&?&;&.@&
&&&&&&&AB58%B5"C&$D#1%,&<89&E&-&;&-/0&;&-/<&
AB58%B5"C&87B%F7"#>,&<89&E&?&;&-<@&
-&
!"#$%&'()&
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
*+,&
-& -&
.&
.&
/&
/&
0&
0&
!12&"3&4%5678,&-9&:&-&;&.-&;&.<&
&&&&&&&&&&&&&=1>6%8,&-9&:&?&;&.@&
&&&&&&&AB58%B5"C&$D#1%,&<89&E&-&;&-/0&;&-/<&
AB58%B5"C&87B%F7"#>,&<89&E&?&;&-<@&
-&
58
Solve NDP !"#$%&'()&
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
*&+&,-&
.&
.& .&
/&
/&
/&
0&
0&
0&
1&
1&
1&
!"#$%&'()&
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
*&+&,-&
.&
.& .&
/&
/&
/&
0&
0&
0&
1&
1&
1&
!"#$%&'()&
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
*+,&
-& -&
.&
.&
/&
/&
0&
0&
!12&"3&4%5678,&-9&:&;&<&.-&<&.=&
&&&&&&&&&&&&&>1?6%8,&-9&:&@&<&.=&
&&&&&&&AB58%B5"C&$D#1%,&E89&F&;&<&-/0&<&-E=&
AB58%B5"C&87B%G7"#?,&E89&F&@&<&-E=&
-&
/&
!"#$%&'()&
!"
#" #$"
%$" &"
&$"
%"
'"
'$"
*+,&
-& -&
.&
.&
/&
/&
0&
0&
!12&"3&4%5678,&-9&:&;&<&.-&<&.=&
&&&&&&&&&&&&&>1?6%8,&-9&:&@&<&.=&
&&&&&&&AB58%B5"C&$D#1%,&E89&F&;&<&-/0&<&-E=&
AB58%B5"C&87B%G7"#?,&E89&F&@&<&-E=&
-&
/&
59