• 沒有找到結果。

12011年12月14日星期三

N/A
N/A
Protected

Academic year: 2022

Share "12011年12月14日星期三"

Copied!
143
0
0

加載中.... (立即查看全文)

全文

(1)

The Complexity of the Network Design Problem

D.S. Jihnson, J.K. Lenstra, A.H.G. Rinnooy Kan

1

R99922005 黃博平 R99922041 陳彥璋 R99922017 林君達

R00922156 陳子筠

R00922157 李庚謙

R00944050 王舜玄

R00922102 張庭耀

(2)

Introduction P and NP

Network Design Problem (NDP) KNAPSACK and NDP

SNDP is NP-complete Proof of SNDP

Conclusion

Outline

2

(3)

Introduction

R00944050 王舜玄

3

(4)

Why we use computer?

Solve computational problems!

pure theoretical CS applied Mathematics

Introduction

4

(5)

For some specific purposes:

Optimization-

define energy/cost/

profit... functions Maximize/minimize them

Introduction

5

(6)

Opt. Examples:

Shortest path

Traveling salesman Texture synthesis Photo cuts

Introduction

6

(7)

Opt. Examples:

Shortest path

Traveling salesman Texture synthesis Photo cuts

Introduction

6

We just met this man in midterm!

(8)

Shortest path:

weighted graph

directed/undirected Bellman–Ford/

Dijkstra

Introduction

7

(9)

Texture synthesis:

define energy functions overlap and immerse texture patches

computed by energy function minimization

Introduction

8

(10)

Photo cuts:

define energy function combine photos for panorama purpose computed by energy function minimization

Introduction

9

(11)

Network Design Problem given a undirected graph find subgraph connects all vertices

minimize sum of shortest path weights

subject to budget constraint

Introduction

10

(12)

This paper try to:

show NP-completeness of NDP even for special case:

all edge weights are equal and budget restricts to spanning tree

Introduction

11

(13)

The result implies:

construct similar algorithms for other combinatorial problems

traveling salesman problem multi-commodity network flow problem

none are solvable in poly-time

Introduction

12

(14)

The result implies:

construct similar algorithms for other combinatorial problems

traveling salesman problem multi-commodity network flow problem

none are solvable in poly-time

Introduction

12

Discuss more precisely later

(15)

In the rest of this presentation, we are going to:

Demonstrate what’s P and NP.

Give formal definition for Network Design Problem(NDP).

Discuss relation between NDP and KNAPSACK.

Prove NDP and SNDP is NPC.

Introduction

13

(16)

Introduction P and NP

Network Design Problem (NDP) KNAPSACK and NDP

SNDP is NP-complete Proof of SNDP

Conclusion

Outline

14

(17)

P and NP

R99922017 林君達

15

(18)

A simple machine conceptually exists for computation.

Almost every

computation model can be transformed to Turing Machine.

What is Turing Machine anyway ?

16

(19)

Take a closer look on the main difference between these two types.

(Transition Functions and Transition Relations)

Deterministic and Non-deterministic

17

(20)

Take a closer look on the main difference between these two types.

(Transition Functions and Transition Relations)

Deterministic and Non-deterministic

17

(21)

Take a closer look on the main difference between these two types.

(Transition Functions and Transition Relations)

Deterministic and Non-deterministic

17

(22)

A common misunderstanding

Polynomial Time v.s. Non-Polynomial Time

P vs NP

A Common misunderstanding

Polynomial Time v.s. Non-Polynomial Time A Common misunderstanding

Polynomial Time v.s. Non-Polynomial Time

18

(23)

A common misunderstanding

Polynomial Time v.s. Non-Polynomial Time

P vs NP

A Common misunderstanding

Polynomial Time v.s. Non-Polynomial Time A Common misunderstanding

Polynomial Time v.s. Non-Polynomial Time

18

(24)

What’s reduction for?

we say “A reduce to B” if there exists a transformation R which , this prove problem B is “at least hard as ” problem A

Example: 3-coloring reduce to 4-coloring

Reduction

x ∈A ⇔ R(x) ∈B

3-coloring 4-coloring

19

(25)

What’s reduction for?

we say “A reduce to B” if there exists a transformation R which , this prove problem B is “at least hard as ” problem A

Example: 3-coloring reduce to 4-coloring

Reduction

x ∈A ⇔ R(x) ∈B

3-coloring 4-coloring

19

(26)

What’s reduction for?

we say “A reduce to B” if there exists a transformation R which , this prove problem B is “at least hard as ” problem A

Example: 3-coloring reduce to 4-coloring

Reduction

x ∈A ⇔ R(x) ∈B

3-coloring 4-coloring

19

(27)

Reduction must be polynomial to

prevent paradox

Reduction - Paradox

20

(28)

We call a problem X is NP-hard if all the problems in the NP can be reduced to X.

In addition, if X belongs to NP, X is NP-complete.

This also applied to the P-hard and P-complete.

P-hard, NP-hard, NP-complete

21

(29)

Examples of P and NP

22

(30)

Examples of P and NP

22

(31)

NPC examples

Hamiltonian path Vertex cover

Integer linear programming 3-satisfiability

Examples

P examples

Circuit Value Problem (CVP)

Linear programming

23

(32)

Introduction P and NP

Network Design Problem (NDP) KNAPSACK and NDP

SNDP is NP-complete Proof of SNDP

Conclusion

Outline

24

(33)

Network Design Problem (NDP)

R99922005 黃博平

25

(34)

NDP

Goal : NDP is NP-complete Step 1 : NDP is in NP

Step 2 : Reduce a NP-complete problem to NDP

26

(35)

NDP(cont.)

NETWORK DESIGN PROBLEM(NDP):

Given an undirected graph G=(V,E), a weight function L:E->N, a budget B and a criterion

threshold C(B,C N), does there exist a subgraph G’=(V,E’) of G with weight and

criterion value F(G’)<=C

where F(G’) denotes the sum of the weights of the shortest paths in G’ between all vertex pairs?

!"#$%&'()*

• !+,-./0*"+123!*#/.45+6$!"#)7*

* 389:'*;'*<'=8>:%(:=*?>;@A*3B$CD+)D;*E:8?A(*F<'%(8&'*

57+GH!*D*;*I<=?:(*4*;'=*;*%>8(:>8&'*(A>:JA&K=**

****L$4DL****!)*D*=&:J*(A:>:*:M8J(*;*J<I?>;@A*3NB$CD+N)*&F*3*

E8(A*E:8?A(***************************;'=*%>8(:>8&'*9;K<:*

O$3N)PBL*D*EA:>:*O$3N)*=:'&(:J*(A:*J<Q*&F*(A:*

E:8?A(J*&F*(A:*JA&>(:J(*@;(AJ*8'*3N*I:(E::'*;KK*9:>(:M*

@;8>JR*

B

E j

i

j i

L



¦

} ' ,

{

}) , ({



!"#$%&'()*

• !+,-./0*"+123!*#/.45+6$!"#)7*

* 389:'*;'*<'=8>:%(:=*?>;@A*3B$CD+)D;*E:8?A(*F<'%(8&'*

57+GH!*D*;*I<=?:(*4*;'=*;*%>8(:>8&'*(A>:JA&K=**

****L$4DL****!)*D*=&:J*(A:>:*:M8J(*;*J<I?>;@A*3NB$CD+N)*&F*3*

E8(A*E:8?A(***************************;'=*%>8(:>8&'*9;K<:*

O$3N)PBL*D*EA:>:*O$3N)*=:'&(:J*(A:*J<Q*&F*(A:*

E:8?A(J*&F*(A:*JA&>(:J(*@;(AJ*8'*3N*I:(E::'*;KK*9:>(:M*

@;8>JR*

B

E j i

j i

L 

¦

} ' ,

{

}) , ({



27

(36)

Weighted Graph G

8

8

2 2

9 1 2

8

8

5 8

6

!"#$%&'()*

• +,-./(,0*1234/*1*

5*

5*

6* 6*

7* 8* 6*

5*

5*

9* 5*

:*

!"#$%&'()*

• +,-./(,0*1234/*1*

5*

5*

6* 6*

7* 8* 6*

5*

5*

9* 5*

:*

NDP(cont.)

28

(37)

Weighted Graph G

8

8

2 2

9 1 2

8

8

5 8

6

!"#$%&'()*

*

+*

+*

,* ,*

-* .* ,*

+*

+*

/* +*

0*

NDP(cont.)

29

(38)

Now guess and verify!!

8

8

2 2

9 1 2

8

8

5 8

6

!"#$%&'()*

• !&+*,-.//*0'1*2.345677*

8*

8*

9* 9*

:* ;* 9*

8*

8*

<* 8*

=*

*

!"#$%&"#$$*

'(()*+,

-).)(+, '(()*+,

-).)(+,

-).)(+,

!"#$%&'()*

• !&+*,-.//*0'1*2.345677*

8*

8*

9* 9*

:* ;* 9*

8*

8*

<* 8*

=*

*

!"#$%&"#$$*

'(()*+,

-).)(+, '(()*+,

-).)(+,

-).)(+,

NDP(cont.)

30

(39)

Now guess and verify!!

8

8

2 2

9 1 2

8

8

5 8

6

!"#$%&'()*

• !&+*,-.//*0'1*2.345677*

8*

8*

9* 9*

:* ;* 9*

8*

8*

<* 8*

=*

*

!"#$%&"#$$*

'(()*+,

-).)(+, '(()*+,

-).)(+,

-).)(+,

!"#$%&'()*

• !&+*,-.//*0'1*2.345677*

8*

8*

9* 9*

:* ;* 9*

8*

8*

<* 8*

=*

*

!"#$%&"#$$*

'(()*+,

-).)(+, '(()*+,

-).)(+,

-).)(+,

NDP(cont.)

31

(40)

NDP is in NP NP-complete?

Reduce Knapsack problem to NDP

NDP(cont.)

32

(41)

Knapsack problem

n items(T={1,2,3,4,5,6,….,t}) Item x has value and weight Given V and W

Does there exist a subset S T such that and ?

!"#$%#&'($)*+,-.(

• "(/0-.%123456768696:6;6<=60>?(

• @0-.(A(B#%(C#,D-(((((((#"E(F-/GB0(

• H/C-"(I(#"E(J(

• K*-%(0B-)-(-A/%0(#(%D+%-0(L((((((((2(%D&B(0B#0(

( ((((((((((((((((((#"E((((((((((((((((((((((((M(

( (

v

x

w

x



W w

S i

i 

¦



V v

S i

i !

¦



!"#$%#&'($)*+,-.(

• "(/0-.%123456768696:6;6<=60>?(

• @0-.(A(B#%(C#,D-(((((((#"E(F-/GB0(

• H/C-"(I(#"E(J(

• K*-%(0B-)-(-A/%0(#(%D+%-0(L((((((((2(%D&B(0B#0(

( ((((((((((((((((((#"E((((((((((((((((((((((((M(

( (

v

x

w

x



W w

S i

i 

¦



V v

S i

i !

¦



!"#$%#&'($)*+,-.(

• "(/0-.%123456768696:6;6<=60>?(

• @0-.(A(B#%(C#,D-(((((((#"E(F-/GB0(

• H/C-"(I(#"E(J(

• K*-%(0B-)-(-A/%0(#(%D+%-0(L((((((((2(%D&B(0B#0(

( ((((((((((((((((((#"E((((((((((((((((((((((((M(

( (

v

x

w

x



W w

S i

i 

¦



V v

S i

i !

¦



!"#$%#&'($)*+,-.(

• "(/0-.%123456768696:6;6<=60>?(

• @0-.(A(B#%(C#,D-(((((((#"E(F-/GB0(

• H/C-"(I(#"E(J(

• K*-%(0B-)-(-A/%0(#(%D+%-0(L((((((((2(%D&B(0B#0(

( ((((((((((((((((((#"E((((((((((((((((((((((((M(

( (

v

x

w

x



W w

S i

i 

¦



V v

S i

i !

¦



!"#$%#&'($)*+,-.(

• "(/0-.%123456768696:6;6<=60>?(

• @0-.(A(B#%(C#,D-(((((((#"E(F-/GB0(

• H/C-"(I(#"E(J(

• K*-%(0B-)-(-A/%0(#(%D+%-0(L((((((((2(%D&B(0B#0(

( ((((((((((((((((((#"E((((((((((((((((((((((((M(

( (

v

x

w

x



W w

S i

i 

¦



V v

S i

i !

¦



33

(42)

Example

0.5kg, 200NT

5kg,100NT 80kg,6000NT

0.6kg, 22NT

1200kg, 700000NT

給我去偷價 值超過 10000NT

的東西!!

我只能舉 100KG

T_T

34

(43)

Example

0.5kg, 200NT

5kg,100NT 80kg,6000NT

0.6kg, 22NT

1200kg, 700000NT

給我去偷價 值超過 10000NT

的東西!!

我只能舉 100KG

T_T

34

(44)

Example

0.5kg, 200NT

5kg,100NT 80kg,6000NT

0.6kg, 22NT

1200kg, 700000NT

我只能舉 100KG

T_T

可憐你,超 過1000NT

就好!!

35

(45)

Example

0.5kg, 200NT

5kg,100NT 80kg,6000NT

0.6kg, 22NT

1200kg, 700000NT

我只能舉 100KG

T_T

可憐你,超 過1000NT

就好!!

35

(46)

Knapsack problem (another def.)

• W = V

• = for x=1,2,…..t

!"#$%#&'($)*+,-./#"*01-)(2-34"404*"5(

• (678(

• (((((((7((((((((((3*)(97:;<;=>>0(

( (

v

x

w

x

!"#$%#&'($)*+,-./#"*01-)(2-34"404*"5(

• (678(

• (((((((7((((((((((3*)(97:;<;=>>0(

( (

v

x

w

x

36

(47)

Knapsack problem (another def.)

• n items(T={1,2,3,4,5,6,….,t})

• Item i has value

• Given b

• Does there exist a subset S T such that

• ?

!"#$%#&'($)*+,-./#"*01-)(2-34"404*"5(

• "(40-.%/6789:;:<:=:>:?:@A:0B5(

• C0-.(4(1#%(D#,E-(

• F4D-"(+(

• G*-%(01-)-(-H4%0(#(%E+%-0(I((((((((6(%E&1(01#0(

( ( ((((((((J(

( (



b a

S i

¦

i



a

i

!"#$%#&'($)*+,-.(

• "(/0-.%123456768696:6;6<=60>?(

• @0-.(A(B#%(C#,D-(((((((#"E(F-/GB0(

• H/C-"(I(#"E(J(

• K*-%(0B-)-(-A/%0(#(%D+%-0(L((((((((2(%D&B(0B#0(

( ((((((((((((((((((#"E((((((((((((((((((((((((M(

( (

v

x

w

x



W w

S i

i 

¦



V v

S i

i !

¦



!"#$%#&'($)*+,-./#"*01-)(2-34"404*"5(

• "(40-.%/6789:;:<:=:>:?:@A:0B5(

• C0-.(4(1#%(D#,E-(

• F4D-"(+(

• G*-%(01-)-(-H4%0(#(%E+%-0(I((((((((6(%E&1(01#0(

( ( ((((((((J(

( (



b a

S i

¦

i



a i

37

(48)

Knapsack problem

• Knapsack problem is NP-complete

Knapsack

problem NDP

Polynomial-time reducible

38

(49)

Introduction P and NP

Network Design Problem (NDP) KNAPSACK and NDP

SNDP is NP-complete Proof of SNDP

Conclusion

Outline

39

(50)

KNAPSACK & NDP

R99922041 陳彥璋

40

(51)

A KNAPSACK Example

There is a solution =>

!"#$!%&!'#"()*+,-."

/"0"1" 2"0"3"

*4"5"*6"0"7"5"8"0"3"

9:.;."<="*"=>-?/<>@"֜"

!"#$!%&!'#"()*+,-."

/"0"1" 2"0"3"

*4"5"*6"0"7"5"8"0"3"

9:.;."<="*"=>-?/<>@"֜"

41

(52)

KNAPSACK => NDP

KNAPSACK

NDP

!"#$%#&!'֜'"($'

!"#$%#&!'

"($'

)*+,-*'

!"#$%#&!'֜'"($'

!"#$%#&!'

"($'

)*+,-*'

!"#$%#&!'֜'"($'

!"#$%#&!'

"($'

)*+,-*'

42

(53)

KNAPSACK => NDP

KNAPSACK

NDP

!"#$%#&!'֜'"($'

!"#$%#&!'

"($'

)*+,-*'

!"#$%#&!'֜'"($'

!"#$%#&!'

"($'

)*+,-*'

!"#$%#&!'֜'"($'

!"#$%#&!'

"($'

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

)'*'+,'

!"#$%#&!'֜'"($'

!"#$%#&!'

"($'

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

)'*'+,'

43

(54)

KNAPSACK => NDP

KNAPSACK

NDP

!"#$%#&!'֜'"($'

!"#$%#&!'

"($'

)*+,-*'

!"#$%#&!'֜'"($'

!"#$%#&!'

"($'

)*+,-*'

!"#$%#&!'֜'"($'

!"#$%#&!'

"($'

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

)'*'+,'

!"#$%#&!'֜'"($'

!"#$%#&!'

"($'

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

)'*'+,'

44

(55)

KNAPSACK => NDP

KNAPSACK

NDP

!"#$%#&!'֜'"($'

!"#$%#&!'

"($'

)*+,-*'

!"#$%#&!'֜'"($'

!"#$%#&!'

"($'

)*+,-*'

!"#$%#&!'֜'"($'

!"#$%#&!'

"($'

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

)'*'+,'

!"#$%#&!'֜'"($'

!"#$%#&!'

"($'

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

)'*'+,'

45

(56)

KNAPSACK => NDP

KNAPSACK

NDP

!"#$%#&!'֜'"($'

!"#$%#&!'

"($'

)*+,-*'

!"#$%#&!'֜'"($'

!"#$%#&!'

"($'

)*+,-*'

!"#$%#&!'֜'"($'

!"#$%#&!'

"($'

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

)'*'+,'

!"#$%#&!'֜'"($'

!"#$%#&!'

"($'

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

)'*'+,' -'

-' -'

46

(57)

KNAPSACK => NDP

KNAPSACK

NDP

!"#$%#&!'֜'"($'

!"#$%#&!'

"($'

)*+,-*'

!"#$%#&!'֜'"($'

!"#$%#&!'

"($'

)*+,-*'

!"#$%#&!'֜'"($'

!"#$%#&!'

"($'

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

)'*'+,'

!"#$%#&!'֜'"($'

!"#$%#&!'

"($'

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

)'*'+,' -'

-' -' .'

.'

.' /'

/'

/' 0'

0'

0'

47

(58)

KNAPSACK => NDP

KNAPSACK

NDP

!"#$%#&!'֜'"($'

!"#$%#&!'

"($'

)*+,-*'

!"#$%#&!'֜'"($'

!"#$%#&!'

"($'

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

)'*'+,'

!"#$%#&!'֜'"($'

!"#$%#&!'

"($'

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

)'*'+,' -'

-' -' .'

.'

.' /'

/'

/' 0'

0'

0'

!"#$%#&!'֜'"($'

!"#$%#&!'

"($'

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

)'*'+,' -'

-' -' .'

.'

.' /'

/'

/' 0'

0'

0'

48

(59)

Solve NDP

!"#$%#&!'֜'"($'

!"#$%#&!'

"($'

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

)'*'+,' -'

-' -' .'

.'

.' /'

/'

/' 0'

0'

0'

!"#$%&'()&

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

*&+&,-&

.&

.& .&

/&

/&

/&

0&

0&

0&

1&

1&

1&

!"#$%&'()&

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

*&+&,-&

.&

.& .&

/&

/&

/&

0&

0&

0&

1&

1&

1&

49

(60)

Solve NDP

Any feasible solution can be assumed to

contain the star graph.

!"#$%&'()&

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

*&+&,-&

.&

.& .&

/&

/&

/&

0&

0&

0&

1&

1&

1&

!"#$%&'()&

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

*&+&,-&

.&

.& .&

/&

/&

/&

0&

0&

0&

1&

1&

1&

!"#$%&'()&

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

*&+&,-&

.&

.& .&

/&

/&

/&

0&

0&

0&

1&

1&

1&

234&5%6789#%&7"#:;8"3&<63&9%&

677:=%>&;"&<"3;683&;?%&7;6@&

A@6B?C&&

50

(61)

Solve NDP

Any feasible solution can be assumed to contain the star graph.

!"#$%&'()&

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

*&

*&

+&

+&

,&

,&

-&

-&

./0&1%2345#%&3"#674"/&82/&5%&23369%:&7"&8"/724/&7;%&372<&=<2>;?&&

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

*& *&

+&

+&

,&

,&

-&

-&

@"7;&8"/369%&329%&56:=%7A&567&7;%&8<47%<4"/&$2#6%&"1&<4=;7&"/%&43&#2<=%<B&

51

(62)

Solve NDP !"#$%&'()&

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

*&+&,-&

.&

.& .&

/&

/&

/&

0&

0&

0&

1&

1&

1&

!"#$%&'()&

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

*&+&,-&

.&

.& .&

/&

/&

/&

0&

0&

0&

1&

1&

1&

!"#$%&'()&

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

*+,&

-& -&

.&

.&

/&

/&

0&

0&

52

(63)

Solve NDP !"#$%&'()&

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

*&+&,-&

.&

.& .&

/&

/&

/&

0&

0&

0&

1&

1&

1&

!"#$%&'()&

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

*&+&,-&

.&

.& .&

/&

/&

/&

0&

0&

0&

1&

1&

1&

!"#$%&'()&

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

*+,&

-& -&

.&

.&

/&

/&

0&

0&

!"#$%&'()&

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

*+,&

-& -&

.&

.&

/&

/&

0&

0&

!12&"3&4%5678,&&-9&:&.-&

;<58%<5"=&$>#1%,&?89&:&-/0&

53

(64)

Solve NDP !"#$%&'()&

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

*&+&,-&

.&

.& .&

/&

/&

/&

0&

0&

0&

1&

1&

1&

!"#$%&'()&

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

*&+&,-&

.&

.& .&

/&

/&

/&

0&

0&

0&

1&

1&

1&

!"#$%&'()&

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

*+,&

-& -&

.&

.&

/&

/&

0&

0&

!12&"3&4%5678,&&-9&:&.-&

;<58%<5"=&$>#1%,&?89&:&-/0&

<"185=6&#">@&

!"#$%&'()&

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

*+,&

-& -&

.&

.&

/&

/&

0&

0&

!12&"3&4%5678,&&-9&:&.-&

;<58%<5"=&$>#1%,&?89&:&-/0&

<"185=6&#">@&

54

(65)

Solve NDP !"#$%&'()&

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

*&+&,-&

.&

.& .&

/&

/&

/&

0&

0&

0&

1&

1&

1&

!"#$%&'()&

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

*&+&,-&

.&

.& .&

/&

/&

/&

0&

0&

0&

1&

1&

1&

!"#$%&'()&

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

*+,&

-& -&

.&

.&

/&

/&

0&

0&

!12&"3&4%5678,&&-9&:&.-&

;<58%<5"=&$>#1%,&?89&:&-/0&

!"#$%&'()&

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

*+,&

-& -&

.&

.&

/&

/&

0&

0&

!12&"3&4%5678,&&-9&:&.-&

;<58%<5"=&$>#1%,&?89&:&-/0&

55

(66)

Solve NDP !"#$%&'()&

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

*&+&,-&

.&

.& .&

/&

/&

/&

0&

0&

0&

1&

1&

1&

!"#$%&'()&

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

*&+&,-&

.&

.& .&

/&

/&

/&

0&

0&

0&

1&

1&

1&

!"#$%&'()&

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

*+,&

-& -&

.&

.&

/&

/&

0&

0&

!12&"3&4%5678,&&-9&:&.-&

;<58%<5"=&$>#1%,&?89&:&-/0&

!"#$%&'()&

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

*+,&

-& -&

.&

.&

/&

/&

0&

0&

!12&"3&4%5678,&&-9&:&.-&

;<58%<5"=&$>#1%,&?89&:&-/0&

@@@@@@@@@@@@@@@@@@&

&&&&&&&&&&&&&&&&&&&-&

56

(67)

Solve NDP !"#$%&'()&

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

*&+&,-&

.&

.& .&

/&

/&

/&

0&

0&

0&

1&

1&

1&

!"#$%&'()&

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

*&+&,-&

.&

.& .&

/&

/&

/&

0&

0&

0&

1&

1&

1&

!"#$%&'()&

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

*+,&

-& -&

.&

.&

/&

/&

0&

0&

!12&"3&4%5678,&&-9&:&.-&

;<58%<5"=&$>#1%,&?89&:&-/0&

!"#$%&'()&

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

*+,&

-& -&

.&

.&

/&

/&

0&

0&

!12&"3&4%5678,&&&&&-9&&&&:&.-&

&&&&&&&&&&&&&;1<6%8,&-9&=&>&:&.?&

&&&&&&&@A58%A5"B&$C#1%,&&&&D89&&&&:&-/0&

@A58%A5"B&87A%E7"#<,&D89&F&>&:&-D?&

57

(68)

Solve NDP !"#$%&'()&

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

*&+&,-&

.&

.& .&

/&

/&

/&

0&

0&

0&

1&

1&

1&

!"#$%&'()&

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

*&+&,-&

.&

.& .&

/&

/&

/&

0&

0&

0&

1&

1&

1&

!"#$%&'()&

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

*+,&

-& -&

.&

.&

/&

/&

0&

0&

!12&"3&4%5678,&-9&:&-&;&.-&;&.<&

&&&&&&&&&&&&&=1>6%8,&-9&:&?&;&.@&

&&&&&&&AB58%B5"C&$D#1%,&<89&E&-&;&-/0&;&-/<&

AB58%B5"C&87B%F7"#>,&<89&E&?&;&-<@&

-&

!"#$%&'()&

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

*+,&

-& -&

.&

.&

/&

/&

0&

0&

!12&"3&4%5678,&-9&:&-&;&.-&;&.<&

&&&&&&&&&&&&&=1>6%8,&-9&:&?&;&.@&

&&&&&&&AB58%B5"C&$D#1%,&<89&E&-&;&-/0&;&-/<&

AB58%B5"C&87B%F7"#>,&<89&E&?&;&-<@&

-&

58

(69)

Solve NDP !"#$%&'()&

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

*&+&,-&

.&

.& .&

/&

/&

/&

0&

0&

0&

1&

1&

1&

!"#$%&'()&

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

*&+&,-&

.&

.& .&

/&

/&

/&

0&

0&

0&

1&

1&

1&

!"#$%&'()&

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

*+,&

-& -&

.&

.&

/&

/&

0&

0&

!12&"3&4%5678,&-9&:&;&<&.-&<&.=&

&&&&&&&&&&&&&>1?6%8,&-9&:&@&<&.=&

&&&&&&&AB58%B5"C&$D#1%,&E89&F&;&<&-/0&<&-E=&

AB58%B5"C&87B%G7"#?,&E89&F&@&<&-E=&

-&

/&

!"#$%&'()&

!"

#" #$"

%$" &"

&$"

%"

'"

'$"

*+,&

-& -&

.&

.&

/&

/&

0&

0&

!12&"3&4%5678,&-9&:&;&<&.-&<&.=&

&&&&&&&&&&&&&>1?6%8,&-9&:&@&<&.=&

&&&&&&&AB58%B5"C&$D#1%,&E89&F&;&<&-/0&<&-E=&

AB58%B5"C&87B%G7"#?,&E89&F&@&<&-E=&

-&

/&

59

參考文獻

相關文件

Output : For each test case, output the maximum distance increment caused by the detour-critical edge of the given shortest path in one line.... We use A[i] to denote the ith element

計畫推動持續在學科建立團隊共識。專業研習 的部分則以PLC核心成員為主做課程研發,再

1.考生請於110年4月21日(星期三)攜帶甄試通知單、身分證明文件(正本)、2B

Primal-dual approach for the mixed domination problem in trees Although we have presented Algorithm 3 for finding a minimum mixed dominating set in a tree, it is still desire to

各系所正取生請於民國 104 年 12 月 30 日(星期三)前於本校招生資訊網 http://www.cyut.edu.tw/~recruit

(不寄發口試通知) 105年3月15日(星期二) 105年3月15日(星期二) 105年5月11日(星期三) 口試日期

If P6=NP, then for any constant ρ ≥ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general traveling-salesman problem...

黃宇昆先生 註冊教育心理學家 日期: 2017年6月21日 (星期三) 時間: 上午8:45–12:15.. 地點: