• 沒有找到結果。

linear operator

N/A
N/A
Protected

Academic year: 2022

Share "linear operator "

Copied!
41
0
0

加載中.... (立即查看全文)

全文

(1)

大學數學

(2)

大 學 線性代數 .

linear operator . 線性代數 , 性 .

linear transformation 性 , 再 . 代數

field 性 over field polynomial ring 代數 (

).

, ,

代. , .

, . , 性

, . , .

, 大 . 大

, . ,

.

v

(3)

Form Reduction

linear operator, ordered basis, representative

matrix (form). matrices form similar

matrices. form canonical form ( canonical form

similar), form 數學 .

(大 學 ),

forms.

前 Primary Decomposition Theorem, linear operator

characteristic polynomial p(x)c linear operator, p(x)

F[x] irreducible polynomial. p(x) forms.

4.1. Diagonal From

, T -invariant subspace , eigenvalue

eigenvector, 再 diagonal form.

linear operator T : V → V, {O} , T -invariant subspace dimension 1 T -invariant subspace. U T -invariant subspace dim(U ) = 1,

v̸= OV U = Span({v}). U T -invariant , T (v)∈ U =

Span({v}). , λ ∈ F T (v) =λv. .

Definition 4.1.1. T : V → V linear operator, λ ∈ F v∈ V v̸= OV

T (v) =λv, λ T eigenvalue, v T eigenvector.

, eigenvector v v̸= OV, eigenvalue λ λ ̸= 0.

OV T (OV) =λOV, trivial , OV

eigenvector. v̸= OV T (v) = 0v = OV, v Ker(T ) . 0

T eigenvalue, Ker(T )̸= {OV}, T : V → V one-to-one.

65

(4)

Question 4.1. V finite dimensional vector space T : V → V linear operator.

?

(1) T is an isomorphism (2) T is one-to-one (3) T is onto (4) 0 is not an eigenvalue of T .

linear operator eigenvalue eigenvector, T

eigenvalue, 再 eigenvalue eigenvector . λ

T : V → V eigenvalue, v̸= OV T (v) =λv, λid(v) − T(v) = OV.

v∈ Ker(λid − T), λid − T linear operator isomorphism, Lemma

3.1.4 det(λid − T) = 0. det(λid − T)? , V ordered

basisβ, 再 λid−T β representative matrix [λid − T]β. det(λid−T) det([λid − T]β). dim(V ) = n,

[λid − T]β = [λid]β− [T]β =λ[id]β− [T]β =λIn− [T]β.

λ ∈ F T eigenvalue, det(λIn− [T]β) = 0. T characteristic poly- nomial χT(x) =χ[T ]β(x) = det(xIn− [T]β). , λ ∈ F T eigenvalue, χT(λ) = 0. , λ ∈ F χT(x) = 0 , det(λid − T) = 0. λid − T linear operator one-to-one, v∈ V v̸= OV T (v) =λv.

.

Proposition 4.1.2. V finite dimensional vector space T : V → V linear operator. λ ∈ F T eigenvalue χT(λ) = 0.

dim(V ) = n , χT(x)∈ F[x]n , F

n ( ), T eigenvalue. λ ∈ F χT(x)

, (x−λ) | χT(x). x−λ F[x] monic irreducible polynomial, χT(x) monic irreducible polynomials χT(x) = p1(x)c1··· pk(x)ck. pi(x)

T eigenvalue. x−λ χT(x)

, .

Definition 4.1.3. V finite dimensional F-space, T : V→ V linear operator λ

T eigenvalue. x−λ χT(x) λ algebraic multiplicity.

, χT(x) = p1(x)c1··· pk(x)ck, p1(x), . . . , pk(x) monic irreducible polynomials p1(x) = x−λ, c1 λ algebraic multiplicity.

Question 4.2. T : V → V linear operator dim(V ) = n, T eigenvalue? eigenvalue algebraic multiplicity ?

T eigenvalue , eigenvalue eigenvector

. λ eigenvalue, 前 v̸= OV T (v)−λv = OV v

eigenvalue λ eigenvector. eigenvalue λ eigenvector Ker(T−λid)

OV . vector space.

(5)

Definition 4.1.4. T : V → V linear operator λ T eigenvalue.

Eλ(T ) = Ker(T−λid) = {v ∈ V | T(v) = λv}.

T λ eigenspace dim(Eλ(T )) λ geometric multiplicity.

v∈ Eλ(T ), T (T (v)) = T (λv) = λT(v), T (v)∈ Eλ(T ). Eλ(T ) T -invariant subspace.

Question 4.3. Lemma 3.5.3 Eλ(T ) T -invariant subspace ? Eλ(T ) ? ordered basisβ [T−λid]β= [T ]β−λIn

matrix, 再 [T ]β−λIn null space N([T ]β−λIn) ={x ∈ Fn| ([T]β−λIn)·x = O}. 再 β

N([T ]β−λIn) V , Eλ(T ) , dim(N([T ]β−λIn)) =

dim(Eλ(T )) λ geometric multiplicity.

Example 4.1.5. T : M2(F)→ M2(F) T

( a b c d

)

=

( a c b d

)

. M2(F) ordered basis β = (

( 1 0 0 0

) ,

( 0 1 0 0

) ,

( 0 0 1 0

) ,

( 0 0 0 1

)

), T β repre-

sentative matrix

[T ]β=



1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1



.

χT(x) =χ[T ]β(x) = (x− 1)3(x + 1). 1 −1 T eigenvalue, algebraic multiplicity 3 1.

T 1 eigenspace E1(T ), N([T ]β− I4),



0 0 0 0

0 −1 1 0

0 1 −1 0

0 0 0 0



 ·



x1 x2 x3 x4



 =



 0 0 0 0



,







0 = 0

−x2+ x3 = 0 x2− x3 = 0

0 = 0

N([T ]β− I4) ={(x1, x2, x2, x4)t| x1, x2, x4∈ F}. 1 geometric multiplicity 3 E1(T ) ={

( x1 x2

x2 x4 )

| x1, x2, x4∈ F}.

, −1 eigenspace E−1(T ), N([T ]β− (−1)I4),



2 0 0 0 0 1 1 0 0 1 1 0 0 0 0 2



 ·



x1 x2 x3 x4



 =



 0 0 0 0



,







2x1 = 0 x2+ x3 = 0 x2+ x3 = 0 2x4 = 0

N([T ]β− (−1)I4) ={(0,x2,−x2, 0)t| x2∈ F}. −1 geometric multiplicity 1 E−1(T ) ={

( 0 x2

−x2 0 )

| x2∈ F}.

Algebraic multiplicity geometric multiplicity, .

(6)

Example 4.1.6. T : P1(F)→ P1(F) T (ax + b) = bx, P1(F) ordered basis β = (x,1). [T ]β =

( 0 1 0 0

)

, χT(x) = x2. 0 T eigenvalue algebraic multiplicity 2. N([T ]β− 0I2) = N([T ]β)

( 0 1 0 0

)

· ( a

b ) ( =

0 0

)

b = 0, N([T ]β− 0I2) ={(a,0)t| a ∈ F}. 0 geometric multplicity 1 E0(T ) ={ax | a ∈ F}.

T eigenvalueλ algebraic multiplicity geometric multiplicity

, . Primary Decomposition Theorem

. Theorem 3.5.8 ,

µT(x) = p1(x)m1··· pk(x)mk and χT(x) = p1(x)c1··· pk(x)ck

p1(x), . . . , pk(x) monic irreducible polynomials λ T eigenvalue, p1(x) = x−λ. Vi= Ker(pi(T )◦mi), for i = 1, . . . , k, Primary Decomposition Theorem (Theorem 3.5.8)

V = V1⊕ ··· ⊕Vk

µT|Vi(x) = pi(x)mi and χT|Vi(x) = pi(x)ci,∀i = 1,...,k.

p1(x) = x−λ,

V1= Ker((T−λid)◦m1)⊇ Ker(T −λid) = Eλ(T ).

λ geometric multiplicity dim(Eλ(T ))≤ dim(V1). , c1 λ algebraic multiplicity, χT|V1(x) = (x−λ)c1, deg(χT|V1(x)) = c1. linear operator characteristic polynomial degree operator space dimension,

dim(V1) = c1. dim(Eλ(T ))≤ c1, .

Lemma 4.1.7. V finite dimensional F-space, T : V → V linear operator λ T eigenvalue, λ algebraic multiplicity 大 geometric multiplicity.

λ T eigenvalue , Eλ(T ) OV , dim(Eλ(T ))≥ 1,

λ geometric multiplicity 大 1. λ algebraic multiplicity 1, Lemma 4.1.7 λ algebraic multiplicity geometric multiplicity ( λ geometric multiplicity 1). , λ algebraic multiplicity

geometric multiplicity ? .

Proposition 4.1.8. V finite dimensional F-space, T : V→ V linear operator λ T eigenvalue. λ algebraic multiplicity geometric multiplicity

x−λ | µT(x) (x−λ)2T(x).

(7)

Proof. 前 , µT(x) = p1(x)m1··· pk(x)mk χT(x) = p1(x)c1··· pk(x)ck, p1(x) = x−λ. V1= Ker((T−λid)◦m1). x−λ | µT(x) (x−λ)2T(x),

m1= 1, V1= Ker(T−λid) = Eλ(T ). 前 dim(V1) λ algebraic multiplicity, dim(Eλ(T )) λ geometric multiplicity, .

, λ algebraic multiplicity geometric multiplicity, dim(V1) = dim(Eλ(T )), V1= Ker(T−λid). , v∈ V1, T (v)−λid(v) = OV.

T−λid V1 zero mapping, (T−λid)|V1 = T|V1−λid|V1 = O.

, h(x) = x−λ, h(T|V1) = O. Lemma 3.3.5 T|V1 minimal polynomial µT|V1(x) h(x) = x−λ. Theorem 3.5.8 µT|V1(x) = (x−λ)m1,

m1= 1. 

, χT(x) F[x] , χT(x) =

p1(x)c1··· pk(x)ck, pi(x) x−λi. λi alge-

braic multiplicity geometric multiplicity , Proposition 4.1.8 µT(x) = p1(x)··· pk(x), Vi= Ker(T−λiid) = Eλi(T ), ∀i = 1,...,k. Primary Decomposi- tion Theorem

V = Eλ1(T )⊕ ··· ⊕ Eλk(T ).

V eigenspaces (internal) direct sum. eigenspace

OV T eigenvector, Eλi(T ) basis Si T eigenvector

. V = Eλ1(T )⊕ ··· ⊕ Eλk(T ), Proposition 3.4.6 S1∪ ··· ∪ Sk V

basis, V basis T eigenvector . {v1, . . . , vn} V

basis, vi T eigenvector eigenvalue γi ( γi ),

V ordered basis β = (v1, . . . , vn). i = 1, . . . , n, T (vi) =γivi,

[T ]β=



γ1 O

. ..

O γn



diagonal matrix ( ). .

Definition 4.1.9. V finite dimensional F-space T : V → V linear operator.

V basis T eigenvectors , T diagonalizable linear

operator.

linear operator diagonalizable.

Theorem 4.1.10. V finite dimensional F-space T : V → V linear operator.

.

(1) T diagonalizable linear operator.

(2) V ordered basis β [T ]β diagonal matrix.

(8)

(3) T characteristic polynomial χT(x) F[x] , T eigenvalue algebraic multiplicity geometric multiplicity .

(4) T minimal polynomial µT(x) F[x] monic

.

Proof. 前 (3)⇒ (1) (1)⇒ (2), (2)⇒ (4). dim(V ) = n β V ordered basis

[T ]β=



γ1 O

. ..

O γn



diagonal matrix. λ1, . . . ,λk 1, . . . ,γn} = {λ1, . . . ,λk}. γi

λj γij. χT(x) =χ[T ]β(x) = (x−γ1)···(x −γk) = (x−λ1)c1···(x −λk)ck, ci∈ N. Theorem 3.3.7 ( Theorem 3.3.9) µT(x) = (x−λ1)m1···(x −λk)mk, mi∈ N. h(x) = (x−λ1)···(x −λk), Lemma 3.2.1

h([T ]β) = ([T ]βλ1In)···([T]βλkIn)

=



γ1λ1 O . ..

O γnλ1

···



γ1λk O . ..

O γnλk



=



1λ1)···(γ1λk) O . ..

O (γn−λ1)···(γnλk)



γi λj, j = 1, . . . , k γij, h([T ]β) = O, h(T ) = O.

Lemma 3.3.5 µT(x)| h(x), µT(x) = h(x) = (x−λ1)···(x −λk), T minimal

polynomial µT(x) F[x] monic .

(4)⇒ (3). µT(x) = (x−λ1)···(x −λk), λi∈ F . Theorem 3.3.7, χT(x) = (x−λ1)c1···(x −λk)ck ci∈ N, χT(x) F[x]

. λ1, . . . ,λk T eigenvalues, i = 1, . . . , k (x−λi)|µT(x) (x−λi)2T(x). Proposition 4.1.8 λi algebraic

multiplicity geometric multiplicity . . 

Question 4.4. dim(V ) = n, T : V → V linear operator. T n eigenvalue, T diagonalizable?

Question 4.5. Example 4.1.5 Example 4.1.6 T diagonalizable?

前 linear operator, 性 n× n

. A∈ Mn(F), eigenvalue eigenvector.

Definition 4.1.11. A∈ Mn(F). λ ∈ F x∈ Fn x̸= O A· x =λx,

λ A eigenvalue, x T eigenvector.

(9)

A characteristic polynomial χA(x) A eigenvalues λ

N(A−λIn) A λ eigenvector, eigenvalue algebraic multiplicity geometric multiplicity, ... 性 , 再 .

Question 4.6. A∈ Mn(F), λ A eigenvalue, λ algebraic multiplicity geometric multiplicity ? A Lemma 4.1.7 Proposition 4.1.6

?

diagonalizable matrix .

Definition 4.1.12. A∈ Mn(F). Fn basis A eigenvectors , A diagonalizable matrix.

Theorem 4.1.10 A diagonalizable .

linear operator , 再 .

Theorem 4.1.13. A∈ Mn(F). . (1) A diagonalizable matrix.

(2) P∈ Mn(F) invertible P−1· A · P diagonal matrix.

(3) χA(x) F[x] , A eigenvalue

algebraic multiplicity geometric multiplicity .

(4) µA(x) F[x] monic .

A diagonalizable, Theorem 4.1.13 (2) P−1·A·P diagonal matrix

A diagonal form. P A diagonal form.

P−1· A · P = D =



γ1 O

. ..

O γn

,

Pi∈ Fn P i-th column. 前 i-th column ,

A· P i-th column A· Pi, P· D i-th column γiPi, A· P = P · D A· Pi=λPi, P i-th column Pi eigenvalue γi eigenvector.

diagonalizable matrix A eigenvectors Fn basis,

column column , invertible matrix P, A .

P−1· A · P .

diagonalizable matrices, diagonal form

similar. A diagonalizable, B∼ A, B diagonalizable.

P invertible P−1· A · P = D diagonal matrix. Q invertible B = O−1· A · Q,

(Q−1· P)−1· B · (Q−1· P) = (P−1· Q) · (Q−1· A · Q) · (Q−1· P) = P−1· A · P = D.

(10)

Q−1· P invertible B diagonalizable.

A, B diagonalizable, A∼ B, characteristic poly- nomial, eigenvalues A B eigenvalue algebraic multiplicity

. eigenvalue algebraic multiplicity geometric multiplicity,

A, B diagonal form eigenvalue 線 數 . ,

A, B diagonal form eigenvalue 線 數 ,

diagonal form 線 , diagonal form . 線

eigenvector ordered basis ( (i, i)-th entry ( j, j)-th

entry P i-th column j-th column ), A∼ B.

4.2. Triangular Form

linear operator T characteristic polynomial monic polyno-

mials , T diagonalizable. 探 T

.

χT(x) ( χT(x) =

(x−λ1)c1···(x −λk)ck). V over field F algebraically closed ( F =C) . Primary Decomposition Theorem, T minimal polynomial µT(x) = (x−λ)m. (T−λid)◦m= O.

linear operator T : V → V T◦m= O, nilpotent,

m T◦m= O, nilpotent operator index. T−λid nilpotent

index m. 探 nilpotent operator 性 .

linear operator T : V → V. v∈ Im(T◦i), u∈ V v = T◦i(u),

i≥ 2 , v = T◦i−1(T (u))∈ Im(T◦i−1). chain of

subspaces

V ⊇ Im(T) ⊇ Im(T◦2)⊇ ··· ⊇ Im(T◦i−1)⊇ Im(T◦i)⊇ ··· .

, T nilpotent of index m, .

Lemma 4.2.1. dim(V ) > 0, T nilpotent operator of index m, chain of subspaces.

V) Im(T) ) Im(T◦2)) ··· ) Im(T◦i−1)) Im(T◦i)) ··· ) Im(T◦m−1)) Im(T◦m) ={OV}.

Proof. Im(T◦m−1)) Im(T◦m) ={OV}. T◦m= O, v∈ V, T◦m(v) = OV, Im(T◦m) ={OV}. , Im(T◦m−1) = Im(T◦m) ={OV}, T◦m−1= O,

mT◦m= O , Im(T◦m−1)̸= Im(T◦m).

V ) Im(T). Im(T ) = V , v∈ V v1 ∈ V

v = T (v1). v1∈ V, v2∈ V v = T (v1) = T◦2(v2), V = Im(T◦2).

, V = Im(T◦i), ∀i ∈ N. V ̸= {OV}, T nilpotent ,

V ̸= Im(T).

(11)

, 1≤ i ≤ m − 2, v∈ Im(T◦i+1) u∈ V v = T◦i+1(u) = T (T◦i(u)). Im(T◦i) = Im(T◦i+1), T◦i(u)∈ Im(T◦i) = Im(T◦i+1) w∈ V T◦i(u) = T◦i+1(w). v = T (T◦i(u)) = T◦i+2(w)∈ Im(T◦i+2), Im(T◦i+1) = Im(T◦i+2).

Im(T◦m−1) = Im(T◦m), 前 Im(T◦m−1)̸= Im(T◦m) ,

Im(T◦i)̸= Im(T◦i+1), . 

dim(V ) = n T : V → V nilpotent operator of index m, triangular form. Im(T◦m−1) ordered basis (v1, . . . , vk1),

T (vi)∈ Im(T◦m) ={OV},

T (vi) = OV,∀i = 1,...,k1.

{vk1+1, . . . , vk2} (v1, . . . , vk1, . . . , vk2) Im(T◦m−2) ordered basis.

T (vi)∈ Im(T◦m−1) = Span({v1, . . . , vk1}), ∀i = k1+ 1, . . . , k2,

ordered basis (v1, . . . , vk1, . . . , vk2) T|Im(T◦m−2) representative matrix ( Ok1,k1

Ok2−k1,k1 Ok2−k1,k2−k1 )

,

Oi, j i× j , k1× k2− k1 .

{vk2+1, . . . , vk3} (v1, . . . , vk1, . . . , vk2, . . . , vk3) Im(T◦m−3) ordered basis.

T (vi)∈ Im(T◦m−2) = Span({v1, . . . , vk1, . . . , vk2}), ∀i = k2+ 1, . . . , k3,

ordered basis (v1, . . . , vk1, . . . , vk2, . . . , vk3) T|Im(T◦m−3) representative matrix

 Ok1,k1

Ok2−k1,k1 Ok2−k1,k2−k1 Ok3−k2,k1 Ok3−k2,k2−k1 Ok3−k2,k3−k2

.

Im(T ) ordered basis (v1, . . . , vkm−1), j = 1, . . . , m− 1, (v1, . . . , vkj) Im(T◦m− j) ordered basis

T (vi)∈ Im(T◦m−( j−1)) = Span({v1, . . . , vkj−1}), ∀i = kj−1+ 1, . . . , kj. {vkm−1+1, . . . , vn} (v1, . . . , vkm−1, . . . , vn) V ordered basis,

T (vi)∈ Im(T) = Span({v1, . . . , vkm−1}), ∀i = km−1+ 1, . . . , kn, ordered basis (v1, . . . , vkm−1, . . . , vn) T representative matrix



O

... . .. ∗

O O O

.

線 0 upper triangular matrix ( ), .

(12)

Proposition 4.2.2. V finite dimensional F-space T : V→ V linear operator.

T nilpotent V ordered basis β [T ]β upper triangular matrix

[T ]β0.

Proof. 前 : T nilpotent, V ordered basisβ [T ]β upper triangular matrix 線 0. , [T ]β upper triangular matrix 線 0, χT(x) =χ[T ]β(x) = xn ( n = dim(V )), T◦n= O, T

nilpotent. 

Question 4.7. V finite dimensional F-space T : V → V nilpotent operator of index m, χT(x) ? µT(x) ?

, linear operator T : V → V, Im(T ), V ordered

basis β, representative matrix [T ]β. 再 [T ]β column space C([T ]β) (

C(A) A column space). column space τβ◦−1 V ,

Im(T ) . upper triangular matrix .

Example 4.2.3. linear operator T : P2(R) → P2(R), T (ax2+ bx + c) = (c−a)x2+ cx + (c− a). P2(R) ordered basisβ = (x2, x, 1), [T ]β=

−1 0 1

0 0 1

−1 0 1

,

χT(x) = x3. [T ]2β =

 0 0 0

−1 0 1

0 0 0

 µT(x) = x3, T nilpotent of index 3. [T ]2β column space Span({(0,1,0)t}), Im(T◦2) = Span({x}). [T ]β column space, Im(T ) = Span({x,x2+ 1}). x2̸∈ Im(T), P2(R) ordered basisβ= (x, x2+ 1, x2).

T (x) = 0, T (x2+ 1) = 1x + 0(x2+ 1) + 0x2, T (x2) = 0x + (−1)(x2+ 1) + 0x2 [T ]β=

 0 1 0 0 0 −1

0 0 0

 diagonal 0 upper triangular matrix.

T minimal polynomial µT(x) = (x−λ)m , T−λ id nilpotent Proposition 4.2.2 ordered basis β [T−λ id]β = U diagonal 0 upper triangular matrix

U =



0 ∗ ∗

... . .. ∗ 0 ··· 0

.

dim(V ) = n, [T−λ id]β= [T ]β−λIn, [T ]β=λIn+U , diagonal λ upper triangular matrix

λIn+U =



λ

. .. ∗

O

λ

.

(13)

Theorem 4.2.4. V finite dimensional F-space. T : V→ V linear operator characteristic polynomial

χT(x) = (x−λ1)c1···(x −λk)ck, λ1, . . . ,λk F , V ordered basisβ

[T ]β=

 A1 . ..

O O

Ak

,

Ai ci× ci upper triangular matrix



λi . .. ∗

O

λi



.

Proof. Theorem 3.3.9 mi≤ ci µT(x) = (x−λ1)m1···(x−λk)mk, Primary Decomposition Theorem, V = V1⊕··· ⊕Vk, Vi= Ker((T−λiid)◦mi) µT|Vi(x) = (x−λi)mi. T|Viλiid|Vi nilpotent, Proposition 4.2.2, βi Vi

ordered basis, [T|Vi]βi Ai ci×ci upper triangular matrix. β1, . . . ,βk

V ordered basisβ, [T ]β triangular matrix. 

Theorem 4.2.4 T characteristic polynomial F[x]

, T diagonal form triangular form.

T diagonalizable, T◦i. V eigenvectors

ordered basisβ [T ]β =



γ1 O

. ..

O γn

, [T◦i]β =



γ1i O . ..

O γni

.

T diagonal form , trianbular form T◦i.

V T -invariant subspaces direct sum V = V1⊕ ··· ⊕Vk. v∈ V, v = v1+··· + vk, vi∈ Vi (Proposition 3.4.6). i = 1, . . . , k,

linear operator πi : V → V, πi(v) = vi. linear operator the projection to Vi with respect to the direct sum V = V1⊕ ··· ⊕Vk.

v∈ Vi, πi(v) = v. Vi T -invariant, v∈ Vi,

T (v)∈ Vi. v∈ V, v = v1+··· + vk, vi∈ Vi, T (πi(v)) = T (vi), πi(T (v)) =πi(T (v1) +··· + T(vk)) = T (vi).

T◦πii◦ T, ∀i = 1,...,k. (4.1) Theorem 4.2.5. V finite dimensional F-space. T : V→ V linear operator minimal polynomial

µT(x) = (x−λ1)m1···(x −λk)mk

λ1, . . . ,λk F , T = TD+ TN TD diagonalizable, TN nilpotent of index m = max{m1, . . . , mk}, TD◦ TN= TN◦ TD.

(14)

Proof. Primary Decomposition V = V1⊕ ··· ⊕Vk, Vi= Ker((T−λiid)◦mi), πi: V→ V the projection to Vi with respect to the direct sum V = V1⊕ ··· ⊕Vk. V

linear operator TD1π1+··· +λkπk. vi∈ Vi, TD(vi) =λivi,

Vi basis, TD eigenvectors . V V1, . . . ,Vk direct sum, Vi

basis V basis. V basis TD eigenvectors , TD

diagonalizable.

TN = T− TD V linear operator. vi∈ Vi, TN(vi) = T (vi)− TD(vi) = T (vi)λivi ∈ Vi, Vi TN-invariant. µT|Vi(x) = (x−λi)mi, mi

(T−λiid)◦mi(vi) = OV, ∀vi ∈ Vi, µTN|Vi(x) = xmi. Lemma 3.5.6 µTN(x) = lcm(xm1, . . . , xmk) = xm, m = max{m1, . . . , mk}, TN nilpotent of index m.

TD◦ T = (λ1π1+··· +λkπk)◦ T =λ11◦ T) + ··· +λkk◦ T), (4.1)

T◦ TD1(T◦π1) +··· +λk(T◦πk) = TD◦ T.

TD◦ TN= TD◦ (T − TD) = TD◦ T − TD◦ TD= T◦ TD− TD◦ TD= (T− TD)◦ TD= TN◦ TD.

 Question 4.8. Theorem 4.2.4 ordered basis β, [T ]β upper triangular matrix, Theorem 4.2.5 TD, TN β representative matrix [TD]β, [TN]β ? Question 4.9. Theorem 4.2.5, T minimal polynomial µT(x)

F[x] monic , T diagonalizable?

Theorem 4.2.5, triangular form T◦i . TD◦TN= TN◦TD, T◦2= (TD+ TN)◦ (TD+ TN) = TD◦2+ TD◦ TN+ TN◦ TD+ TN◦2= TD◦2+ 2TD◦ TN+ TN◦2.

數學

T◦i=

i j=0

(i j

)

TD◦i− j◦ TN◦ j.

TD diagonalizable TD◦ j, TN nilpotent of index m,

j≥ m, TN◦ j= O. T◦i .

linear operator n× n matrix .

Theorem 4.2.6. A∈ Mn(F) characteristic polynomial minimal polynomial

χA(x) = (x−λ1)c1···(x −λk)ck,µA(x) = (x−λ1)m1···(x −λk)mk

(15)

λ1, . . . ,λk F . invertible matrix P

P−1· A · P =

 A1 . ..

O O

Ak

,

Ai ci× ci upper triangular matrix



λi . .. ∗

O

λi

.

P−1· A · P = D + N, D diagonal matrix, N nilpotent matrix D· N = N · D Nm= O, m = max{m1, . . . , mk}.

A triangular form P−1· A · P = D + N, D· N = N · D, P−1· Ai· P =

i

j=0

(i j

)

Di− j· Nj.

A∈ Mn(F) χA(X ) = (x−λ1)c1···(x −λk)ck, µA(x) = (x−λ1)m1···(x −λk)mk. invertible matrix M M−1· A · M upper triangular matrix.

Chapter 3 primary decomposition invertible matrix P P−1· A · P block diagonal matrix



A1

O

. ..

O

Ak



,

ci× ci matrix Ai. µAi(x) = (x−λi)mi, AiλiIci nilpotent of index mi, Proposition 4.2.2 (AiλiIci)mi−1 column space

basis ( Proposition 4.2.2 Im(T◦m−1) basis), 大 (AiλiIci)mi−2

column space basis, 大 Fci basis. basis

column by column ci× ci matrix Qi, Q−1i · Ai· Qi upper

triangular matrix. Qi diagonal , n× n invertible

matrix 



Q1

O

. ..

O

Qk



,

(P· Q)−1· A · (P · Q) = Q−1· (P−1· A · P) · Q =



Q−11 · A1· Q1

O

. ..

O

Q−1k · Ak· Qk



,

upper triangular matrix . .

(16)

Example 4.2.7. Example 3.5.10 5× 5 matrix

A =





2 1 1 1 0

1 4 2 2 1

−1 −2 0 −1 −1

0 0 0 1 1

0 −1 −1 −1 0





χA(x) =µA(x) = (x− 1)3(x− 2)2 Q[x] , invertible matrix M∈ M5(Q) M−1· A · M upper triangular matrix.

Example 3.5.10 P∈ M5(Q) A block diagonal matrix.

P−1· A · P =





0 −1 −1 0 0

1 1 0 0 0

0 1 2 0 0

0 0 0 1 −1

0 0 0 1 3





.

B =

 0 −1 −1

1 1 0

0 1 2

, C =(

1 −1

1 3

)

triangular forms. µB(x) = (x− 1)3, B− I3 nilpotent matrix.

B− I3=

−1 −1 −1

1 0 0

0 1 1

, (B −I3)2=

 0 0 0

−1 −1 −1

1 1 1

.

Proposition 4.2.2 (B−I3)2 column space basis, w1= (0,−1,1)t, 再 B−I3 column space w2 {w1, w2} B−I3 column space basis,

w2= (−1,1,0)t. 再 w3∈ Q3 {w1, w2, w3} Q3 basis, w3= (0, 0, 1)t. Bw1 = w1, Bw2= w1+ w2, Bw3= w1+ w2+ w3, Q1=

 0 −1 0

−1 1 0

1 0 1

, Q−11 · B · Q1=

 1 1 1 0 1 1 0 0 1

 upper triangular matrix.

µC(x) = (x− 2)2, C− 2I2 nilpotent matrix. C− 2I2= ( −1 −1

1 1

)

, u1=

( −1 1

)

C− 2I2 basis, 再 u2= ( 1

0 )

{u1, u2} Q2 basis. Cu1= 2u1, Cu2= u1+ 2u2, Q2=

( −1 1 1 0

)

, Q−12 ·C · Q2= ( 2 1

0 2 )

upper triangular matrix. Q1, Q2 5× 5 invertible matrix

Q =





0 −1 0 0 0

−1 1 0 0 0

1 0 1 0 0

0 0 0 −1 1

0 0 0 1 0





(17)

upper triagular matrix

(P· Q)−1· A · (P · Q) = Q−1· (P−1· A · P) · Q =





1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 2 1 0 0 0 0 2





.

4.3. Jordan Form

Triangular form similar.

ordered basis Jordan form. χT(x)

( χT(x) = (x−λ1)c1···(x −λk)ck). nilpotent .

linear operator T : V → V.T, T◦2, . . . kernel . v∈ Ker(T◦i), T◦i(v) = OV, T◦i+1(v) = T (T◦i(v)) = OV.

chain of subspaces

{OV} ⊆ Ker(T) ⊆ Ker(T◦2)⊆ ··· ⊆ Ker(T◦i−1)⊆ Ker(T◦i)⊆ ··· .

, T nilpotent of index m, Ker(T◦i+1)̸= Ker(T◦i), ∀i = 1,...,m − 1.

Lemma 4.3.1. dim(V ) > 0, T nilpotent operator of index m, chain of subspaces.

{OV} ( Ker(T) ( Ker(T◦2)( ··· ( Ker(T◦i−1)( Ker(T◦i)( ··· ( Ker(T◦m−1)( Ker(T◦m) = V.

Proof. Ker(T◦m−1)( Ker(T◦m) = V . T◦m= O, v∈ V, T◦m(v) = OV, Ker(T◦m) = V . , Ker(T◦m−1) = Ker(T◦m) = V , T◦m−1= O,

mT◦m= O , Ker(T◦m−1)̸= Ker(T◦m).

{OV} ( Ker(T). v∈ V OV = T◦m(v) = T (T◦m−1(v)) T◦m−1(v)∈ Ker(T). Ker(T ) ={OV}, v∈ V T◦m−1(v) = OV T◦m−1= O , Ker(T )̸= {OV}.

, 1≤ i ≤ m − 2, v∈ V OV = T◦m(v) = T◦i+1(T◦m−(i+1)(v)), T◦m−(i+1)(v)∈ Ker(T◦i+1). Ker(T◦i) = Ker(T◦i+1), T◦m−(i+1)(v)∈ Ker(T◦i)

OV = T◦i(T◦m−(i+1)(v)) = T◦m−1(v). v∈ V , T◦m−1= O

, Ker(T◦i)̸= Ker(T◦i+1). 

i≥ 2, v1, . . . , vs∈ Ker(T◦i+1) linearly independent Span(v1, . . . , vs)∩ Ker(T◦i) ={OV}, T (v1), . . . , T (vs)∈ Ker(T◦i) linearly independent.

r1T (v1) +··· + rsT (vs) = OV,

參考文獻

相關文件

at each point of estimation, form a linear combination of a preliminary esti- mator evaluated at nearby points with the coefficients specified so that the asymptotic bias

Theorem 1.5.9 finite dimensional vector space linearly independent set 大 basis; spanning

vector space subspaces internal direct sum, 再 external direct. sum, 再 internal

而利用 row vectors 的方法, 由於可以化為 reduced echelon form, 而 basis 是由此 reduced echelon form 中的 nonzero vectors 所組成, 所以雖然和來的 spanning

在這一節中, 我們介紹 change of basis 的概念, 了解到一個 linear operator 換了 ordered basis

另外, 以後我們要談的 decomposition theorem, 都是將一個 vector space 拆解成一些 subspaces 的 internal direct sum, 我們不會再去談 external direct sum,

這些 dimensions 之間的關係, 而這些關係和 ordered basis 的選取無關, 所以 A, B associated λ 的 elementary Jordan matrices 的各個階數的個數會相同, 也就是 A,B 可以化為相同的

What is the danger if your hair suddenly stands up?... Lightning bolt