iPhone使用者如何安排應用程式圖示? -階層構念的影響

全文

(1)

iPhone -

How iPhone users arrange their application icons? – The effect of

construal level

107 6

(2)

東吳大學博碩士論文紙本著作權授權書

(提供授權人裝訂於紙本論文書名頁之次頁用)

本授權書所授權之學位論文,為本人於東吳大學 學年度第 學期,

取得 學院 學系 □碩士 □博士 學位之論文。

論文名稱:

指導教授:

本人依著作權法之規定,同意將上列論文全文(含摘要),以非專屬、無償授權 東吳大學,基於「資源共享、互惠合作」之理念,與回饋社會與學術研究之目 的,東吳大學圖書館得以紙本、光碟或數位化等各種方式收錄、重製與利用;

於著作權法合理使用範圍內,讀者得進行閱覽或列印。

□申請延後公開

本論文已向經濟部智慧財產局申請專利,申請案號: ,另填 寫「東吳大學博碩士論文(紙本)延後公開申請書」 ,請於 年 月 日 後再將上列論文公開閱覽。

※依教育部100年7月1日台高通字第1000108377號函文,論文若延後公開需訂定合理期限(不超過5年)。

授 權 人:

(正楷簽名)

中 華 民 國 年 月 日

106 2

⼼理

iPhone使⽤者如何安排應⽤程式圖⽰︖- 階層構念的影響 汪曼穎博⼠

(3)
(4)

d s d

e d

p - Facebook

Line Google+ f Böhmer Krüger (2013) iPhone

Android c (usage)

(relatedness) vde s (construal level theory)

xe

e y l

vd x (Trope,

Liberman, & Wakslak, 2007) v

a

e y

BIF (Behavior identify form) (Vallacher & Wegner, 1989) x

c

ns (Wolfe & Horowitz, 2017)

y

x

y f

e x

t (mindset) e

x

e

(5)

Abstract

The smart phone desktop is typically filled with a variety of application icons.

Their different colors, lines and shapes dazzled users and is not conducive to effective visual search. Icon arrangement serves to improve search efficiency and reduce cognitive load by helping users direct their attention to the region of the desktop where the target icon is most likely to appear. Böhmer and Krüger (2013) found that iPhone users adopt several desktop arrangement criterions, such as usage and

relatedness or mixed criterions. The construal level theory suggests that people interpret their immediate environment in different ways. Lower construal level thinkers tend to think concretely, focusing on the feasibility and operability of things.

Higher construal level thinkers tend to think abstractly, paying attention to whether they can achieve their desired goals. Variations in construal level may result in different behaviors because of different ways of understanding one’s surroundings (Trope, Liberman, & Wakslak, 2007). Does the user's interpretation of the mobile phone environment in terms of construal level affect the choice of arrangement criterions? Study 1 & 2 collected user’s desktop screenshots and used BIF (Behavior identify form) (Vallacher & Wegner, 1989) to measure user’s tendency in construal level thinking. It was found that lower construal level participants tend to adopt the usage criterion to arrange icons while higher construal level users show no obvious preference. In study 2, participants were additionally interviewed to obtain their subjective interpretations of their icon arrangement. Specific task was also devised to further understand the how criterion difference may affect users’ searching

performance. The result shows that the frequency of use plays essential roles. For frequently used applications, users often adopt location cues to guide their search demonstrating attention guidance from history (Wolfe & Horowitz, 2017). The scheme of icon arrangement plays more important roles when user search for less frequently used application. For example, icons arranged by the usage criterion may help the user think in terms of about frequency of use to direct his attention to the most likely region. In this study, the individual differences in mobile desktop environment are explained by human’s construal level thinking and its relationships with their searching behaviors. These findings contribute to the implementation of the human-centered design for system designers by demonstrating how users’ interaction with the cellphone icons is shaped by users’ mindsets.

Keyword Construal level, Users’ mindset, Smartphone desktop arrangement, Smartphone system interface design

(6)

... 8

... 9

... 9

(Construal Level Theory) ... 11

... 12

... 15

... 15

... 15

... 15

... 16

... 16

... 17

... 17

... 17

... 18

... 19

... 20

... 20

... 22

... 30

... 34

K ? ... 38

... 43

h ... 45

... 45

164 ... 47

(7)

... 52 n ... 54

(8)

1 1a(m mt) 1b(m )

1c(z ) 1d(zt)

1e(z ) ... 10

2 Kunar, Flusberg Wolfe(2008) ( ) ( ) (A) (B) 3 6 ... 14

3 t ... 20

4 e ... 21

5: ... 31

6 ... 32

7 ( m) Dock ( m) a rl (z t ) ... 34

8 iPhone ... 37

9 106 ... 38

10 57 210 x x ... 39

11 u ( m) ( m) ( z) ( z) ... 40

12 ... 41

(9)

1 Liberman &Trope (1998) Trope, Liberman & Wakslak (2007)

x ... 11

2 e (n=49)... 17

3 t ... 18

4 e (n=106) ... 21

5 e (n=94) ... 22

6 ... 23

7 e e (n = 47) ... 29

8 e (n = 57) ... 31

9 e (n = 57) ... 32

10 - ... 35

11 - ... 35

12 - ... 36

13 ... 41

14 - (n=57) ... 42

(10)

BKFIGTS 0 MKE TKPOS h

s t x

s vn z & ö z 5PPIMG M )

K ? d &) 2PITKG & , z t

d n s y c

d h k s y PMFGRS

c c f

y c FPEL p K ? 0OFRPKF

a u 0F TK G ? STGN v d

s u 4KOFM TGR

:E5RGOGRG & ( 2PEPNP 4ULU W e & - y

x u y u

x c

y u

y u n

d 4KOFM TGR :E5RGOGRG

& ( v y u

c u

d

c t c z u

g d vd

x J 7U & a

k

EPOSTRUG k d d

(11)

EPOSTRU M MG GM RP G

9KDGRN O B LSM L & ha x a c

vxu y

y u

1 JNGR 8R IGR & a y

fe

c & ö & & ö a K JPOG 0OFRPKF & e

K JPOG & 0OFRPKF a (, K JPOG

(( 0OFRPKF 1 JNGR 8R IGR c

f f v

AS IG AS DKMKT GM TGFOGSS 3 TGRO M

0GSTJGTKE z

1. (Usage) x

z p c

1a

2. (Usability) c

n y l 1b n

( )

3. (Relatedness) y x

y c f 1c

(12)

4. (External)

z 1d du c

z u

5. (aesthetic) u d

r 1e

1 1a(m mt) 1b(m )

1c(z ) 1d(zt) 1e(z

)

Böhmer Krüger (2013) m e x

– Instagram Twitter Snapchat c

Facebook c Facebookv

Facebook Instagram Twitter

Snapchat t Böhmer Krüger (2013) td 76

(13)

d 12 6 d iPhone

(usage)x s

c

d

(Construal Level Theory)

(Construal Level Theory) e h

t h x

y (Desirability)

(Feasibility) s

(Liberman & Trope, 1998)( 1)

1 Liberman &Trope (1998) Trope, Liberman & Wakslak (2007) x

r r

FGSKR DKMKT G SKDMKT

d

Alter, Oppenheimer Zemla (2010)

x u

c l f k e kfe

zh u u

Alter e Vallacher Wegner (1989) BIF (Behavior

Identification Form) d 25

x 2f t u x

y x c m k 2 f t

x kf t c m

x l x

(14)

x x 1 x 0

x Alter e (2010) u

u n

t u

d u t k

g c mo

h Böhmer Kr ger (2013)

s y x y c

y x

sf y r Facebook Twitter Google

Plus x y

g c y f

f x

h x v

u c

ty l g c

n y l

1

O

A

x u yd

l 1 fe

c u

(15)

y (Visual search)

/ (Recall) c t

(Treisman & Gelade, 1980) s

t i x c

y f c

o n

y

y v o s c

( )t c i y

c h

c n k

Kunar Flusberg Wolfe (2008) e (Repeated)

2 t x

z ;

z d ;

Kunar e n

x d v

h (c )

(Visual Training) (Mix Training) d (Pure Memory)

3 o

c c

6f f f

o x d

d yv d h

(16)

2 Kunar, Flusberg Wolfe(2008)

( ) ( ) (A) (B)

3 6

Wolfe Horowitz (2017) d 5 z

m(bottom-up)- m z(top-down)-

(perceived value)- l (history)-

l (scene)- scene properties

y Kunar e (2008) t

c t

c ty y d

x

d y l vi

y Wolfe Horowitz (2017) t -

(scene) scene properties y

y y

semantic guidance : e b

xe d o c m y e

x syntactic guidance m

c e u

xe l d n y m

(17)

y c t

x (scene)

c

d c t

x y

c c d

H2 C

B

a

- x

x 20~35 iPhone 57 31 26

( / ) t

BIF(Behavior Identify Form) (Vallacher & Wegner, 1989) ( )

t Böhmer Krüger (2013)

(18)

x ( ) Böhmer Kr ger (2013)

n x

d c d

d BIFv

z

1. x

d p d ( Facebook LINE)

y d x

2. d y

n c

3. u

c r

4. f

57 iPhone a 155 e 48

f ( iPhone 30f Dock ) d 2.72

f 6.93f BIF t (15 ) x

( 2)

8 (X2(1) = 2.23, p = .14)

e (p = .05)

(19)

2 e (n=49)

16(72.7%) 14(51.9%) 30(63.3%)

6(27.3%) 13(48.1%) 19(38.7%)

22(100%) 27(100%) 49(100%)

* tx

BIFt m

c v

c a

B

c x 2 c

d

2

x 20~35 iPhone 63 45 18

(20)

( / ) x ( / )

x x BIFt

d n f

d n x

t Böhmer Krüger (2009)

y u

v (Benedek & Miner, 2003)a iOS

( u w )

d 118 f n t 32f

16f( 3)

3 t

Advanced Clean Comfortable Controllable

Convenient Easy to use Efficient d Effortless

Flexible d Friendly Fun d Helpful d

Integrated Powerful y

n

Straight-forwar d

a Usable

Annoying e Boring Complex Confusing e

Dated Disruptive Distracting e

Dull

(21)

Frustrating Gets in the

way d Hard to Use Impersonal

Incomprehensi

ble Rigid Time-consumin

g Uncontroll

able

n f

a iPhone

fed u 30~40

( ) iOS

ö z

xa t

( 3) xa

u m t

( ) u 4

x

t 2f yx 2f yx

x

d 3 fx 1fx

o

(22)

3 t

f

( ) u

d

b FB Instagram Messenger c d

x k ckf

b

o h c c x

l aio y c

xa t u

xy d

o f

x o l kf

t z ( )

BIF m

d 63 iOS ö x 2.8 ö t

d7 Android e z 53.47f ( iPhone

30f) c m e 39.23 f(

iPhone Dock ) e d 2.9 5.97

f 183 Böhmer Krüger (2013)

120

(23)

4 x ns 66 55%

x 35 29.2% x

4 e

e d

8

x 6 106 5

x (accessibility)

t (13 )

( / ) ( / )d ( 4)(X2(1) = 5.82, p

< .05 ; phi = .23, p < .05) c d

(p < .01) (p =.42) x

1

4 e (n=106)

40(78.4%) 31(56.4%) 71(67.0%)

11(21.6%) 24(43.6%) 35(33.0%)

(24)

51(100%) 55(100%) 106(100%)

* tx

u x x

d 12 d tu

x x x 8 x

sf u

t u x 3

u f u

x 1 n

d k BIF

13 x ( / ) ( / )

( 5)(X2(1) = 3.257, p =.07) c

(p < .05)

5 e (n=94)

31(73.8%)* 29(55.8%) 60(64.8%)

11 (26.2%) 23(44.2%) 34(36.2%)

42 (100%) 52(100%) 94(100%)

* tx

x a

v Böhmer Krüger (2013) t s

x + e v

s

Böhmer Krüger (2013) h

(25)

53 x

d 2 x v d 2 z s

x 7 6

6

A. +

1.

c ( ) t

d y

2.

y

c +

O O O O

O O

(26)

B. + + 1.

c ( ) t

d y v

2.

y

t xa e

C. + +

1.

c ( ) t

d y c t

n

(27)

2.

t LINE FB tz

t y

D. + +

1.

z z

O O O i

O O O

(28)

2.

z u

d z i c m

E. + +

1.

c z

2.

c to l KKBOX z

m O

O

O

(29)

F. +

1.

d y

A B C

A B x C

2.

d l l

O O O

(30)

G. + + 1.

d y

2.

y x

x

(31)

y

m 7 ( 7) t

4e e x 10e s

x + 49.1% t +

x 14% x 15.8% +

x s 19.3% t 8.8%

7 e e (n = 47)

e e

n = 38

e n = 19

+ A. + 11(19.3%) 8 (21.1%)* 3 (15.8%)

B. + + 8(14.0%) 6 (15.8%) 2 (10.5%)

C. + + 9(15.8%) 8 (21.1%) 1 (5.3%)

+ D. + 4(7%) 4 (10.5%) 0 (0.0%)

+ E. + 4(7%) 3 (7.9%) 1 (5.3%)

+ F. + 6(10.5%) 3 (7.9%) 3 (15.8%)

G. + + 5(8.8%) 3 (7.9%) 2 (10.5%)

10(17.5%) 3(7.9%) 7(36.8%) x

d

c z n +

ds fe

h ( )

y d e

vd u d

(32)

u xar r h

s c

md i c u

y

e 14.5f ( d 18.9%)

12.5% c xt

x 16.1% y s

v h

d (r = -.40, p < .01)

s

d (Levene’s test of equality of error variance, p < .05, Welch’s t test, p =.88) v d (F(1,55) = .00, p = .98)

o e s

c z 57 c

u d

Wolfe Horowitz (2017) 5 h

a x m

z c

( 5) c d 38 e

Facebook z

d38e

p Keynote lk

x y c

Facebook t

(33)

5:

xh (66.7%)

(24.6%) m z(8.8%)( 8)( p < .05)

(66.7%) (17.5%) m z(15.8%)(p < .05)

8 e (n = 57)

h

38(66.7%)* 10(17.5%)

14(24.6%) 38(66.7%)

m z 5(8.8%) 9(15.8%)

57(100%) 57(100%)

x

(66.7%)

(17.5%)(p < .05) (

6) c s

x x

c

( 9)

(34)

c xu

c u

2

6

9 e (n = 57)

h

7(17.1%)* 3(18.7%) 10(17.5%)

25(61.0%) 2(17.6%) 27(47.4%)

4(9.8%) 7(41.2%) 11(19.3%)

m z 5(12.2%) 4(23.5%) 9(15.8%)

41(100%) 16(100%) 57(100%)

x

x d (X2(1) =

1.09, p = .30) d n s

d o

(35)

w f o i a k

o f

a v

d d 19

d 3 c

x ( 7) a

c m v u d n

d c f f x

m FB m rl i u

ck

(36)

7 ( m) Dock

( m) a

rl (z t )

u d v l

y g 57 t 42

l d 2 y

d r

Siri d 1 d 1

l o App Store z

n v

d

B S

a z

d

(r = .72, p < .01) v (r = .30, p < .05) td

s s h

x x 6.62 f/ x 2.89 x

d 8.26 f /2.6 ( F(1,104) = 2.75, p = .10

F(1,104) = 2.67, p = .11) c

( d 7.53 f) ( d 6.77 f) d (F(1,104) = .66, p =.42)

m d x 2.62 x 2.98 (F(1,104)

= 4.88, p < .05) ( 10) s

(37)

y o

10 -

h SS df MS F Sig.

15.388 1 15.388 .661 .418

2422.886 104 23.297 2438.274 105

3.472 1 3.472 4.882 .029

73.962 104 .711

77.434 105

x d

64 vi x

x d 64 x

x d 42 x c

m d ( 11) t ( 3.05 )

( 2.54 )( 12) d

( F(1,40) = .07, p =.79 F(1,40) = .02, p =.88)

11 -

h SS df MS F Sig.

26.119 1 26.119 1.126 .291

2412.155 104 23.194 2438.274 105

.723 1 .723 .981 .324

76.711 106 .738

(38)

77.434 107

12 -

h SS df MS F Sig.

70.417 1 70.417 2.516 .118

1735.333 62 27.989 1805.750 63

3.876 1 3.876 6.702 .012

35.858 62 .578

39.734 63

c Böhmer Kr ger (2013) c

d c

mvd c d s

(F(1,104) = .76, p = .39) c

d (Levene’s test of equality of error variance, p < .01. Welch’s t test, p

< .01) c d 3.01 f

1.23f kf

x ( 3.50f )

x ( 1.13f

) (Levene’s test of equality of error variance, p < .01. Welch’s t test, p < .01) c

m d s

d s

d d 37 (34.26%)c d

iPhone u z

(39)

td d iPhone (

8) t d 24 33.8% d

13 35.1% c d

(X2(1) = .12, p = .73) (X2(1) = .11, p = .74) d

y d

8 iPhone

am y

c f d z 3

1. y

Pages Podcast Dictionary Tweeter

f t

2. xa d

Facebook t u r

3. x d

e lu c

(40)

t s 90e x

y x 83 e 27e

12e (2e ) (2e ) e ( 9)

84.9% d 90e x 259 f

y (421f) y y

n

9 106

57 t 32

t v 57

210 ( 10)

(41)

10 57 210 x x

x

(effortless) a (straight-forward) (convenient) d (efficient) (advanced) (boring) (dated) (dull) (hard to use)k

f x d n o

d s

n a

(comfortable) r h (clean) vd x d i

k (5 ) s

l (confusing) (time-consuming) e(annoying) (

11) x

x s

s x a

(42)

11 u ( m) ( m) ( z) ( z)

( / ) ( / ) (

12) e n( + n=9, + n=7, +

n=10, + n=31) x

( 13) t d

e 7f d

td 1 m z

1. + (n = 9, M = 2.09 ) + (n = 10,

M = .82) n(1.27) x x

+ d n

2. a a (M = .58)

(M = .32) 1.82

3. + (n = 8, M = 2.70) +

(n = 9, M = -.32) 3.02

(n = 31, M = 1.03) 1.67

4. se (.39 : .19)

5. d se d (.44 : .24)

6. + (n = 31, M = 1.03) (n

= 7, M = -0.17) n(1.2) x se

7. (n = 6, M = 1.73)

e

8. d (8e) de

(43)

9. (n = 31, M = -1.3) e (n = 10, M = .37)

10. x

d se (.19 : .05)

12

m y ( 13)

y d x a iOS d

d h

l a

d l p y y

13

a

d

x

(44)

d x d u

x y

/ z

n s y x y

d n f y x

se d d fd

y c

c l x

1 vi

x x u

vi x x x

d

y Diemand-Yauman

e (2011) t vi

(.16) (.11)( 14)(F(1,55) = 4.54, p <.05)

x vd

14 - (n=57)

h SS df MS F Sig.

.031 1 .031 4.54 .038

.371 55 .007

(45)

.402 56

am (3 ) (3 ) x

tdd a d

d 2 td sc d d

e a d

v d m t (2 ) fe

s

v o zi

Böhmer Kr ger (2013) c d

u xa

x y (mindset)

iPhone d

x d

y s

d s

x d s v

s se

d d y

x d

vg

v y

c y x l

s x y

(46)

Wolfe e (2017) x

v Wolfe e

x a

d u

t

a

y d iOS d

a

v d x

d se d

vo s

x y u c

d x

u

a hv d

d x

s e ( d ) yc u

s fe yx t

f v y

u x

l l

l

a y

(47)

d c d xar

c f ggrr l

iOS x

d u d

B

u

c d h

t

h d

ck ö d

n u

y

d y d h

fe d y f

e d

v h

Sternberg, J. Robert.(2010). . ( & , ) w

ed .

Alter, A. L., Oppenheimer, D. M., & Zemla , J. C. (2010). Missing the trees for the forest: a construal level account of the illusion of explanatory depth. Journal of personality and social psychology, 99(3),436-451.

Böhmer, M. & Bauer, G. (2009). Improving the recommendation of mobile services by interpreting the user's icon arrangement. In Proceedings of the 11th

(48)

International Conference on Human-Computer Interaction with Mobile Devices and Services, Bonn, Germany.

Böhmer, M. & Krüger, A. (2013). A study on icon arrangement by smartphone users.

In Proceedings of the 2013’ CHI Conference on Human Factors in Computing Systems, Paris, France.

Benedek, J. & Miner, T. (2003). Measuring Desirability: New methods for evaluating desirability in a usability lab setting. Proceedings of Usability Professionals Association, 2003(8-12), 57.

Diemand,Yauman, Oppenheimer, D. M., & Vaughan, E. B. C. (2011). Fortune favors the Bold (and the Italicized ): Effects of disfluency on educational outcomes.

Cognition,118(1), 111-115

Dogtiev, Artyom (2018). App Download and Usage Statistics 2017. Retrieved from Business of Apps: http://www.businessofapps.com/data/app-statistics/

Findlater, L. & McGrenere J. (2004). A comparison of static, adaptive, and adaptable menus. In Proceedings of the 2004’ CHI conference on Human factors in computing systems, Vienna, Austria.

Fukazawa, Y., Hara, M., Onogi, M. & Ueno, H. (2009). Automatic mobile menu customization based on user operation history. In Proceedings of International Conference on 2009’ Human-Computer Interaction with Mobile Devices and Services, Bonn, Germany.

Kunar, M. A., Flusberg, S., & Wolfe, J. M. (2008). The role of memory and restricted context in repeated visual search. Perception & Psychophysics, 2(70),

314-328.

Oh, H.Y. & Ju, Y. D. (2017). Look at My Face: A New Home Screen User Interface.

In International Conference of Design, User Experience, and Usability, 146-163.

Trope, Y., Liberman, N., & Wakslak, C. (2007). Construal levels and psychological distance: Effects on representation, prediction, evaluation, and behavior.

Journal of consumer psychology, 17(2), 83-95.

Vallacher, R. R., & Wegner, D. M. (1989). Levels of personal agency: Individual variation in action identification. Journal of Personality and Social Psychology, 57(4), 660-671.

Wolfe, M. J., & Horowitz, S. T. (2017). Five factors that guide attention in visual search. Nature Human Behaviour, 1(3), 0058.

(49)

d

(50)
(51)
(52)
(53)
(54)

B o

B

O A - > - n d - 3O O

i d - S>

d - -

O

>A A

S B I

BF £ ( )( £) B )2 31 I £ £

B 1./ A I n B

. o

I I

I )1 34 p D rr

(55)

I )44 B

B

rr (

.r r r r

(56)

1.

A. S B A E D

B

B. ( ) .

.

2.

A. A i

B.

C. ( )

D. ( ) 3

S

O C 3

.O A

A 3

. C

. S

數據

Updating...

參考文獻

Updating...

相關主題 :