• 沒有找到結果。

利用篩選之菌株Bacillus subtilis DYU1生產聚麩胺酸之研究 呂媚君、吳建一

N/A
N/A
Protected

Academic year: 2022

Share "利用篩選之菌株Bacillus subtilis DYU1生產聚麩胺酸之研究 呂媚君、吳建一"

Copied!
6
0
0

加載中.... (立即查看全文)

全文

(1)

利用篩選之菌株Bacillus subtilis DYU1生產聚麩胺酸之研究 呂媚君、吳建一

E-mail: 9607697@mail.dyu.edu.tw

摘 要

Bacillus subtilis DYU1於含有70 g/L L-glutamic acid、30 g/L maltose和5 g/L peptone的培養基中有最大poly-glutamic acid (PGA)產量61 g/L。C/N比會顯著地影響PGA產量及產率。當固定maltose濃度(30 g/L)時,最適C/N比為0.6-7.5;固 定peptone濃度(5 g/L)時,最適C/N比為6-10。另外,本研究亦探討其他影響因子,如pH、振盪速度、金屬離子、NaCl 和Biotin對PGA生產之影響。另外,nuclear magnetic resonance (NMR) spectrometry的結果證實所純化之產物為PGA。而胺基 酸分析結果顯示PGA之純度高達99%。以gel permeation chromatography (GPC)的結果顯示,PGA之分子量超過1,000 kDa;

光學異構物分析之結果顯示PGA是以98% D-glutamic acid所組成,證明在B. subtilis DYU1代謝路徑中,可將L-glutamic acid 轉化為D-glutamic acid。另外,本研究亦以動力學模式來解析B. subtilis DYU1生長、PGA生長和maltose消耗。Monod 和Michaelis-Meten models的結果顯示,當glutamic acid和maltose濃度分別高於70和50 g/L時,有基質抑制PG生產之情形產 生。此外,logistic model除了可合理且精確地模擬B. subtilis DYU1生長、PGA生產及maltose消耗之情形,並證實PGA生產 行為屬於混合相關模式。另外,本研究探討不同pH值和溫度之PGA溶液流變學行為,亦發展一套與溫度和PGA濃度相關

,且對PGA溶液外觀黏度影響之數學模式。本研究亦以活性碳來去除糖蜜廢液之色度,並探討稀釋倍數、吸附劑濃度

、pH值和溫度對色度去除之影響。最後,比較處理前後之廢液作為基質來生產PGA之可行性,以達到減廢之效果。

關鍵詞 : Bacillus subtilis ; 聚麩胺酸 ; 動力學模式 ; 流變學特性 ; 糖蜜廢液 目錄

封面內頁 簽名頁 授權書... iii 中文摘要... iv 英文摘要... vi 誌 謝... viii 目錄... ix 圖目錄... xiv 表目

錄... xx 符號說明... xxii 1.前言... 1 2.文獻回

顧... 4 2.1麩胺酸鈉鹽製程概述... 4 2.1.1發酵廢液分析... 4 2.1.2發酵廢液處理 概述... 5 2.2聚醯胺(polyamide)之簡介... 12 2.3聚麩胺酸(PGA)之特性、生合成與降解... 15 2.3.1聚 麩胺酸之特性... 15 2.3.2聚麩胺酸之生合成... 16 2.3.3合成聚麩胺酸有關之基因... 19 2.3.4 生化代謝上與合成聚麩胺酸有關之酵素... 21 2.3.5聚麩胺酸之降解作用... 24 2.4聚麩胺酸之生產菌株及其特 性... 26 2.4.1需額外補充L-glutamic acid之菌株... 31 2.4.2不需額外補充L-glutamic acid之菌株... 40 2.5聚麩胺酸 生產之環境影響因子... 44 2.5.1碳源... 44 2.5.2氮源... 48 2.5.3氧

氣... 49 2.5.4金屬離子... 52 2.6聚麩胺酸之應用... 53 2.6.1食品工業上之 應用... 55 2.6.2生物醫藥/醫學材料上之應用... 56 2.6.3環境上之應用... 60 2.6.4其他之應 用... 62 3.材料與方法... 64 3.1實驗材料... 64 3.1.1藥

品... 64 3.1.2儀器設備... 66 3.2菌株培養... 67 3.2.1菌株來 源... 67 3.2.2菌株活化... 68 3.2.3聚麩胺酸生產培養... 68 3.3分析方

法... 68 3.3.1Maltose分析... 68 3.3.2多醣分析-酚-硫酸法... 69 3.3.3NH4+-N濃 度之測定... 70 3.3.4黏度... 71 3.4聚麩胺酸之分析... 71 3.4.1膠體滲透層 析... 71 3.4.2高效能液相層析儀(HPLC)分析... 72 3.4.3胺基酸分析... 73 3.4.4核磁共 振(NMR)分析... 74 3.4.5PGA中D/L-光學異構物之比率分析... 74 3.5聚麩胺酸之回收與純化...

74 3.6糖蜜廢液之批次吸附試驗... 77 3.7色度分析... 78 3.8COD分析... 78 3.9BET (Brunauer-Emmett-Teller)表面積測定... 79 4.動力學模式解析... 80 4.1 Monod and Michaelis-Menten models... 80 4.2 Logistic and Luedeking-Piret model... 82 5.結果與討論... 88 5.1探討B. subtilis DYU1生 產PGA之最適培養基及環 境因子... 88 5.1.1不同L-glutamic acid濃度對B. subtilis DYU1 生產PGA之影 響... 88 5.1.2不同碳源及濃度對B. subtilis DYU1生產PGA之 影響... 92 5.1.3不同氮源及濃 度對B. subtilis DYU1生產PGA之 影響... 97 5.1.4 C/N比對B. subtilis DYU1生產PGA之影響.... 101 5.1.5 pH對B. subtilis DYU1生產PGA之影響... 103 5.1.6振盪速度對B. subtilis DYU1生產PGA之影響.. 105 5.1.7金屬離子對B.

subtilis DYU1生產PGA之產量及 D/L glutamic acid組成之影響... 107 5.1.8 NaCl和biotin對B. subtilis DYU1生產PGA之 影響... 111 5.2PGA之基本特性... 115 5.3動力學模式... 120 5.3.1 Monod and Michaelis-Menten models... 120 5.3.2 Logistic model... 133 5.4 PGA溶液之流變學特性... 146

(2)

5.4.1 pH對黏度的影響... 148 5.4.2溫度和PGA濃度對PGA溶液黏度的影響... 149 5.4.3溫度和PGA濃度 與PGA溶液外觀黏度之關係... 150 5.5以活性碳去除糖蜜廢液色度之研究... 166 5.5.1不同稀釋度對糖蜜廢液色度去除 之影響... 166 5.5.2不同活性碳吸附劑量對糖蜜廢液色度去除之影響166 5.5.3不同pH對糖蜜廢液色度去除之影響...

167 5.5.4不同溫度對糖蜜廢液色度去除之影響... 168 5.5.5活性碳之BET分析... 169 5.6利用糖蜜廢液生 產PGA之可行性... 177 6.結論... 180 參考文獻... 182

參考文獻

1.木下祝郎、鵜高重三、秋田定夫。1957。日本特許公告,昭32-8,698。 2.行政院環保署海洋棄置及海上焚化管理辦法。2002。環署水 字第0910088369號令。 3.何觀輝。2006。聚麩胺酸鈉據促進骨成長和增進耐糖因子(GTF)活性之功效。化工資訊與商情。第37期。 4.吳 柔賢、蔡嘉晉、林秋裕。2002。食品廢水之厭氧產氫。第二十七屆廢水處理技術研討會:海報(w-a-p12)。2002/11/29-30。中華民國環境 工程學會。台北,台灣。 5.高海軍。1999。S. zooepidemicus生物合成透明質酸的過程優化與代謝路徑分析。無錫輕工業大學碩士論文。

江蘇,中國。 6.梁筱梅。2000。利用Aspergillus niger醱酵味精製造廢棄物於飼糧對臺灣土雞安全性及營養分利用之研究。國立中興大學 畜產研究所碩士論文。台中,台灣。 7.陳雅玲。2002。聚麩胺酸的物性與化妝品應用之研究。靜宜大學應用化學研究所碩士論文。台中

,台灣。 8.曾四恭。1988。味精發酵廢水處理。食品工廠廢棄物處理及利用研討會:32-48。台北,台灣。 9.楊革、陳堅、曲音波、倫世 儀。2001。金屬離子對地衣芽胞桿菌合成多聚谷胺酸的影響。生物工程學報。17:706-709。 10.蘇遠志。1973。麩酸發酵。天然書社。台 北,台灣。 11.蘇遠志。2003。聚麩胺酸(γ-PGA)之發酵生產與應用。生物產業14:31-38。 12.Abe, K., Ito, Y., Ohmachi, T. and Asada, Y.

1997. Purification and properties of two isozymes of γ-glutamyltranspeptidase form Bacillus subtilis TAM-4. Bioscience, Biotechnology, and Biochemistry 61: 1621-1625. 13.Acemioglu, B. 2004. Adsorption of Congo red from aqueous solution onto calcium-rich fly ash. Journal of Colloid and Interface Science 274: 371-379. 14.Aharoni, S. M., Hammond, W. B., Szobota, J. S. and Masilamani, D. 1984. Reactions in the presence of organic phosphites, II: low-temoerature amidation in solvent. Journal of Polymer Science. Polymer Chemistry Edition 22: 2579-2599.

15.Al-Qodah, Z. 2000. Adsorption of dyes using shale oil ash. Water research 34: 4295-4303. 16.Aono, R. 1987. Characterization of structural component of cell walls of alkalophilic strain of Bacillus sp. C-125. The Biochemical Journal 245: 467-472. 17.Ashiuchi, M. and Misono, H. 2002.

Biochemistry and molecular genetics of poly-γ-glutamate synthesis. Applied Microbiology and Biotechnology 59: 9-14. 18.Ashiuchi, M. and Misono, H. 2003. Poly-γ-glutamic Acid. In Fahnestock, S. R. and Steinb?chel, A. (Eds.), Biopolymers-Polyamides and Complex Proteinaceous Materials I. p. 123-174. Wiley-Vch, KGaA, Weinheim. 19.Ashiuchi, M., Kamei, T. and Misono, H. 2003. Poly-γ-glutamate synthetase of Bacillus subtilis. Journal of Molecular Catalysis. B, Enzymatic 23: 101-106. 20.Ashiuchi, M., Kamei, T., Beak, D. H., Shin, S. Y., Sung, M. H. and Soda, K. 2001a. Isolation of Bacillus subtils (chungkookjng), a poly-γ-glutamate producer with high genetic competence. Applied Microbiology and Biotechnology 57: 764-769. 21.Ashiuchi, M., Nawa, C., Kamei, T., Song, J. J., Hong, S. P., Sung, M. H., Soda, K. and Misono, H. 2001b.

Physiological and biochemical characteristics of poly γ-glutamate synthetase complex of Bacillus subtilis. European Journal of Biochemistry 268:

5321-5328. 22.Ashiuchi, M., Soda, K. and Misono, H. 1999a. A poly-γ-glutamate synthetic system of Bacillus subtilis IFO 3336: gene cloning and biochemical anaylsis of poly-γ-glutamate produced by Escherichia coli clone cells. Biochemical and Biophysical Research Communications 263:

6-12. 23.Ashiuchi, M., Tani, K., Soda, K. and Misono, H. 1998. Properties of glutamate racemmase from Bacillus subtilis IFO 3336 producing poly-glutamate. The Journal of Biochemistry 123: 1156-1163. 24.Aumayr, A., Hara, T. and Ueda, S. 1981. Transformation of Bacillus subtilis in polyglutamate production by deoxyribonucleic acid from B. natto. The Journal of General and Applied Microbiology 27: 115-123. 25.Banergee, K., Cheremisinoff, P. N. and Cheng, L. S. 1997. Adsorption kinetics of O-Xylene by fly ash. Water Research 31: 249-261. 26.Benito, G. G., Mirando, M. P. and Santos, D. R. 1997. Decolrization of wastewater from alcoholic fermentation process with Trametes Versicolor. Bioresource Technology 61: 33-37. 27.Bhattacharyya, D., Hestekin, J. A., Brushaber, P., Cullen, L., Bachas, L.G. and Sikdar, S. K. 1998. Novel poly-glutamic acid Functionalized microfiltration membranes for sorption of heavy metals at high capacity. Journal of Membrane Science 141: 121-135.

28.Bhattacharya, S., Bhat, K. K. and Raghuver, K. G. 1992. Rheology of bengal gram cicer arictinum flour suspensions. Journal of Food

Engineering 17: 83-96 29.Birrer, G. A., Cromwick, A. M. and Gross, R. A. 1994. γ-Poly(glutamic acid) formation by Bacillus licheniformis 9945A.

physiological and biochemical studies. International Journal of Biological Macromolecules 16: 265-275. 30.Borb?ly, M., Nagasaki, Y., Borb?ly, J., Fan, K., Bhogle, A. and Sevoian, M. 1994. Biosynthesis and chemical modification of poly(γ-glutamic acid). Polymer Bulletin 32: 127-132.

31.Borst, A. H., Haverich, G., Walterbush, G., Maatz, W. and Messmer, M. 1982. Fribin adhesive : an important hemostatic adjunct in cardiovascular operation. Journal of Thoracic and Cardiovascular Surgery 84: 548-553. 32.Bovarnick, M. 1942. The formation of extracellular D(-)-glutamic acid polypeptide by Bacillus subtilis. The Journal of Biological Chemistry 145: 415-424. 33.Braunwald, N. S., Gay, W. J. and Tatooles, C. 1966. Evaluation of crosslinked gelatin as a tissue ashesive and hemostatic agent: an experimental study. Surgery 59: 1024-1030.

34.Brito-De La Fuente, E., Choplin, L. and Tanguy, P. A. 1997. Mixing with helical ribbon impellers: effect of highly shear thinning behaviour and impeller geometry. Transactions of the Institution of Chemical Engineers A 75: 45-52. 35.Broadfoot, R. and Miller, K. F. 1990. Rheological studies of massecuites and molasses. International Sugar Journal 92: 107-112. 36.Casas, J., Santos, V. and Garc?a-Ochoa, F. 2000. Xanthan gum

production under several operating conditions: molecular structure and rheological properties. Enzyme and Microbial Technology 26: 282-291.

37.Chang, T. C. and Yang, W. L. 1973. Study on feed yeast production from molasses distillery stillage. Taiwan Sugar 20: 422-427. 38.Chen, X., Chen, S., Sun, M. and Yu, Z. 2005. High yield of poly-γ-glutamic acid from Bacillus subtilis by solid-state fermentation using swine manure as the

(3)

basis of a solid substrate. Bioresource Technology 96: 1872-1879. 39.Cheng, C., Asada, Y. and Aida, T. 1989. Production of γ-polyglutamic acid by Bacillus subtilis A35 under denitrifying conditions. Agricultural and Biological Chemistry 53: 2369-2375. 40.Chibnall, A. C., Rees, M. W. and Richards, F. M. 1958. Structure of the polyglutamic acid from Bacillus subtilis. The Biochemical Journal 68: 129-135. 41.Chio, H. J. and Kunioka, M. 1995. Preparation conditions and swelling equilibria of hydrogel prepared by γ-irradiation from microbial poly(γ-glutamic acid). Radiation Physics and Chemistry 46: 175-179. 42.Chio, H. J., Yang, R. and Kunioka, M. 1995. Synthesis and characterization of pH-sensitive and

biodegradable hydrogels prepared by γ-irradiation using microbial poly(γ-glutamic acid) and poly(ε-lysine). Journal of Applied Polymer Science 58: 807-814. 43.Chuang, T. C. and Lai, C. L. 1978. Study on treatment and utilization of molasses alcohol slop. In: Proceedings of the

International Conference on Water Pollution Control in Developing Countries. p. 475-480. Asia Insitute of Technology, Thailand. 44.Cromwick, A. M. and Gross, R. A. 1995a. Effects of manganese (II) on Bacillus licheniformis ATCC 9945A physiology and γ-poly(glutamic acid) formation.

International Journal of Biological Macromolecules 17: 259-267. 45.Cromwick, A. M. and Gross, R.A. 1995b. Investigation by NMR of metabolic routes to bacterial γ-poly(glutamic acid) using 13C-labeled citrate and glutamate as media carbon sources. Canadian Journal of Microbiology 41:

902-909. 46.Cromwick, A. M., Birrer, G. A. and Gross, R. A. 1996. Effects of pH and aeration on γ-poly(glutamic acid) formation by Bacillus licheniformis in controlled batch fermentor culture. Biotechnology and Bioengineering 50: 222-227. 47.Daninippon Parmaceutical Co, Ltd., 1972.

Ice cream stabilizer. JP Patent 19735/72. 48.Dearfield, K. L., Abernathy, C. O., Ottley, M. S., Brantner J. H. and Hayes, P. F. 1988. Acrylamide:

its metabolism, developmental and reproductive effects, genotoxicity and carcinogenicity. Mutation Research 195: 45-77. 49.Dekie, L., Toncheva, V., Dubruel, P., Schacht, E. H., Barrett, L. and Seymour, L. W. 2000. Poly-L-glutamic acid derivatives as vectors for gene therapy. Journal of Controlled Release 65: 187-202. 50.Do, J. H., Chang, H. and Lee, S. 2001. Efficient recovery of poly(glutamic acid) from highly viscous culture broth. Biotechnology and Bioengineering. 76: 219-223. 51.Du, G., Yang, G., Qu, Y., Chen, J. and Lun, S. 2005. Effects of glycerol on the production of poly(γ-glutamic caid) by Bacillus licheniformis. Process Biochemistry 40: 2143-2147. 52.Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. and Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28: 350-356.

53.Dubrovskii, S. A., Afana?eva, M. V., Lagutina, M. A. and Kazanskii, K. S. 1990. Comprehensive characterization of superabsorbent polymer hydrogels. Polymer Bulletin 24: 107-110. 54.Fan, Z., Ai, Y., Li, J. and Li, G. 2000. Discussion of controlling N loss from volatilization in animal manure. Jounal of Sichuan Normal University (China) 23: 548-550. 55.Feeney, R. E. and Garbaldi, J. A. 1948. Studies on the mineral nutrition of the subtilin-producing strain of Bacillus subtilis. Archives of Biochemistry and Biophysics 17: 447-458. 56.Feeney, R. E., Lightbody, H. D. and Garibaldi, J. A. 1947. Zinc as an essential element for growth and subtilin formation by Bacillus subtilis. Archives of Biochemistry and Biophysics 15: 13-17. 57.Ferreira, I. M. P. L. V. O., Gomes, A. M. P. and Ferreira, M. A. 1998. Determination of sugars, and some other compounds in infant formulae, follow-up milks and human milk by HPLC-UV/RI. Carbohydrate Polymers 37: 225-229. 58.Frankel, R. J., Ludwing, H. F. and Tontkasame, C. 1978. Case studies of agroindustrial wastewater pollution control in Thailand. In: Proceedings of the International Conference on Water Pollution Control in Developing Countries. p. 513-524. Asian Institute of Technology, Thailand. 59.Fujii, H. 1963. On the formation of mucilage by Bacillus natto. Part Ⅲ. Chemical constitutions of mudilage in natto (1). Nippon N?geikaggaku Kaishi 37: 407-411. 60.Garc?a-Ochao, F. and Casas, J. A. 1999. Unstructured kinetic model for sophorolipid production by Candida bombicola. Enzyme and Microbial Technology 25:

613-621. 61.Garc?a-Ochoa, F., Gomez, E. and Santos, V. 2000. Oxygen transfer and uptake rates during xanthan gum production. Enzyme and Microbial Technology 27: 680-690. 62.Gaymans, R. J., Amirtharaj, J. and Kamp, H. K. 1982. Nylon 6 polymerization in the solid state. Journal of Applied Polymer Science 27: 2513-2526. 63.Geankoplis, C. J. 1983. Transport processes and unit operations (2nd ed.). p. 54–58, 161–170. Allyn and Bacon, Boston. 64.Giannos, S., Gross, A., Kaplan, D. and Mayer, J. 1990. Poly(glutamic acid) produced by bacterial fermentation. In: Dawes, E. A. (Eds), Novel biodegradable microbial polymers. p. 457-460. Kluwer Academic, Dordrecht. 65.Godbole, S., Schumpe, A., Shah, Y. and Carr, N. 1984. Hydrodynamics and mass transfer in non-Newtonian solutions in a bubble column. AICHE Journal 30: 213-220. 66.Goto, A. and Kunioka, M. 1992. Biosynthesis and hydrolysis of poly(γ-glutamic acid) from Bacillus subtilis IFO 3335. Bioscience, Biotechnology, and Biochemistry 56: 1031-1035. 67.Grigelmo, N. M., Ibarz, A. R. and Martin, O. B. 1999. Rheologyof peach dietary fibre suspensions. Journal of Food Engineering 39: 91-99. 68.Gross, R. A. 1998. Bacterial γ-poly(glutamic acid). In Kaplan, D. L. (Eds.), Biopolymers from renewable resources. p. 195-219. Springer, Berlin Heidelberg New York, USA. 69.Gutcho, S. 1977. Waste Treatment with Polyelectrolytes and Other Flocculants. p. 1-37. Noyes Data Corp., Park Ridge, New Jersey, USA. 70.Haimour, N. and Sayed, S. 1997. The adsorption kinetics of methylene blue dye on jift. Engineering and Science 24: 215-224. 71.Hammer, M. J. 1991. Water and Wastewater Technology. Wiley, New York, USA.

72.Hanby, W. E. and Rydon, H. N. 1946. The capsule substrance of Bacillus anthracis. The Biochemical Journal 40: 297-309. 73.Hangen, P. and Tung, M. A. 1967. Rheograms for power-law fluids using coaxial cylinder viscometers and a template method. Canadian Institute of Food Science and Technology 9: 98-104. 74.Hara, T. and Ueda, S. 1982. Regulation of polyglutamic acid production in Bacillus subtilis (natto): Transformation of high PGA productivity. Agricultural and Biological Chemistry 46: 2275-2281. 75.Hara, T., Fujio, A. and Ueda, S. 1982a. Elimination of plasmid-linked polyglutamate production by Bacillus subtilis (natto) with acridine orange. Applied and Environmental Biotechnology 44:

1456-1458. 76.Hara, T., Fujio, Y. and Ueda, S. 1982b. Polyglutamate production by Bacillus subtilis (natto). Journal of Applied Biochemistry 4:

112-120. 77.Hasebe, K. and Inagaki, M. 1999. Preparation composition for external use containing gamma-polyglutamic acid and vegetable extract in combination. JP Patent 11240827. 78.Hasegawa, S., Nagatsuri, M., Shibutani, M., Yamamoto, S. and Hasebe, S. 1999. Productivity of concentrated hyaluronic acid using a Maxblend? fermentor. Journal of Bioscience and Bioengineering 88: 68-71. 79.Hashida, M., Akamatsu, K., Nishikawa, M., Yamashita, F. and Takakura, Y. 1999. Design of polymeric prodrugs of prostaglandin E1 having galactose residue for hepatocyte

(4)

targeting. Journal of Controlled Release 62: 253-262. 80.He, L. M, Neu, M. P. and Vanderberg, L. A. 2000. Bacillus licheniformis γ-glutamyl exopolymer: physiochemical characterization and U(VI) interaction. Environmental Science and Technology 34: 1697-1701. 81.Hezayen, F. F., Rehm, B. H. A., Eberhardt, R. and Steinb?chel, A. 2000. Polymer production by two newly isolated extremely halophilic archaea: application of a novel corrosion-resistant bioreactor. Applied Microbiology and Biotechnology 54: 319-325. 82.Hezayen, F. F., Rehm, B. H. A., Tindall, B. J. and Steinb?chel, A. 2001. Transfer of Natrialba asiatica BIT to Natrialba taiwanesis sp. nov. a novel extremely halophilic, aerobic, non-pigmented member of the Archaea from Egypt that produces extracellular poly(glutamic acid). International Journal of Systematic and Evolutionary

Microbiology 51: 1133-1142. 83.Hiromichi, M., Suzuki, H. and Kumagai, H. 2003. Salt-tolerant γ-glutamyl- transpeptidase from Bacillus subtilis 168 with glutaminase activity. Enzyme and Microbial Technology 32: 431-438. 84.Holmes, F. A., Kudelka, A. P., Kavanagn, J. J., Huber, M. H., Ajani, J. A. and Valero, V. 1995. Current status of clinical trials eith Taxol and docetaxel. In Georg, G. I. Chen, T. T., Ojima, I. and Vyas, D. M.

(Eds.), Taxane Anticancer Agent: Basic Science and Current Status. p. 31-57. American Chemical Society, Washington, USA. 85.Holzer, H. 1969.

Regulation of enzyme by enzyme-catalyzed chemical modification. Advances in Enzymology and Related Areas of Molecular Biology 32: 297-326.

86.Hsu, J. H. and Lo, S. L. 2001. Effect of composting on characterization and leaching of copper, manganese, and zinc from swine manure.

Environmental Pollution 114: 119-127. 87.Ibarz, A., Gonzalez, C. And Esplugas, S. 1994. Rheology of clarified fruit juices III: orange juices.

Journal of Food Engineering 21: 485-494. 88.Ikeda, H. and Doi, Y. 1990. A vitamin-K2-binding factor secreted from Bacillus subtilis. European Journal of Biochemistry 192: 219-224. 89.Ito, Y., Tanaka, T., Ohmachi, T. and Asada, Y. 1996. Glutamic acid independent production of poly(

γ-glutamic acid) by Bacillus subtilis TAM-4. Bioscience, Biotechnology, and Biochemistry 60: 1239-1242. 90.Iv?novics, G. and Erd?s, L. 1937. Ein Beitrag zum Wesen der Kapselsubstanz des Milzbrandbazillus. Z Immunit?tsforsch Exp Ther 90: 5-19. 91.Kada, S., Nanamiya, H., Kawamura, F.

and Horinouchi, S. 2004. Glr, a glutamate racemase, supplies D-glutamate to both peptidoglycan synthesis and poly-γ-glutamate production in γ-PGA-producing Bacillus subtilis. FEMS Microbioloby Letters 236: 13-20. 92.Kambourova, M., Tangney, M. and Priest, F. G. 2001. Regulation of polyglutamic acid synthesis by glutamate in Bacillus licheniformis and Bacillus subtilis. Applied and Environmental Microbiology 67: 1004-1007.

93.Karasawa, M., Tanimoto, H. and Toride, Y. 1998. The use of poly-gamma-glutamic acid for preparing an agent for increasing the phosphorus assimilation. European Patent EP0838160. 94.Kaspar, R. L. and Robertson, D. L. 1987. Purification and physical analysis of Bacillus anthracis plasmids pXO1 and pXO2. Biochemical and Biophysical Research Communications 149: 362-368. 95.Kaur, S., Kaler, R. S. S. and Aamarpali, A.

2002. Effect of starch on the rheology of molasses. Journal of Food Engineering 55: 319-322. 96.Kawase, Y. and Hashimoto, N. 1996. Gas hold-up and oxygen transfer in three-phase external-loop airlift bioreactors: non-Newtonian fermentation broths. Journal of Chemical Technology and Biotechnology 65: 325-334. 97.Khalil, K. E., Ramakrishna, P., Nanjundaswamy, A. M. and Patwardhan, M. V. 1989. Rheological behaviour of clarified banana Juice: effect of temperature and concentration. Journal of Food Engineering 10: 231-240. 98.Kim, S. J. and Makodo, M. 1999.

Batch decolorization of molasses by suspended and immobilized fungus of Geotrichum candidum Dec1. Journal of Bioscience and Bioengineering 88: 586-589. 99.King, E., Blacker, A. and Bugg, T. 2000. Enzymatic breakdown of poly-γ-D-glutamic acid in Bacillus licheniformis: identification of a polyglutamyl-γ-hydrolase enzyme. Biomacromolecules 1:75-83. 100.Ko, Y.H. and Gross, R.A. 1998. Effects of glucose and glycerol on γ-poly(glutamic acid) formation by Bacillus licheniformis ATCC 9945A. Biotechnology and Bioengineering 57: 430-437. 101.Kobayashi, H., Hyson, A. H. and Ikada, Y. 1991. Water-curable and biodegradable prepolymer. Journal of Biomedical Materials Research 25: 1481-1494.

102.Konno, A., Taguchi, T. and Yamaguchi, T. 1989. Bakery products and noodles containing polyglutamic acid. US Patent 4,888,193.

103.Kricheldorf, H. R. 1991. Handbook of polymer synthesis. Marcel Dekker. 104.Kubota, H., Matsunobu, T., Uotani, K., Takebe, H., Satoh, A., Tanaka, T. and Taniguchi, M. 1993b. Production of poly(γ-glutamic acid) by Bacillus subtilis F-2-01. Bioscience, Biotechnology, and

Biochemistry 57: 1212-1213. 105.Kubota, H., Nambu, Y. and Endo, T. 1993a. Convenient and quantitative esterification of poly(γ-glutamic acid) produced by microorganism. Journal of Polymer Science. Part A, Polymer Chemistry 31: 2877-2878. 106.Kubota, H., Nambu, Y., Takeda, H. and Endo, T. 1992. Poly-gamma-glutamic acid ester and shaped body theref. US Patent 5,118,784. 107.Kunioka, M. 1993. Properties of hydrogels prepared by-irradiation in microbial poly(γ-glutamic acid) aqueous solutions. Kobunshi Ronbunshu 50: 755-760. 108.Kunioka, M. 1995.

Biosynthesis of poly(γ-glutamic acid) from L-glutamine, citric acid, and ammonium sulfate in Bacillus subtilis IFO 3335. Applied Microbiology and Biotechnology 44: 501-506. 109.Kunioka, M. 1997. Biosynthesis and chemical reactions of poly(amino acid)s from microorganisms. Applied Microbiology and Biotechnology 47: 469-475. 110.Kunioka, M. and Choi, H. J. 1998. Hydrolytic degradation and mechanical properties of hydrogels prepared from microbial poly(amino acid)s. Polymer Degradation and Stability 59: 33-37. 111.Kunioka, M. and Furusawa, K. 1997.

Poly(γ-glutamic acid) hydrogel prepared from microbial poly(γ-glutamic acid) and alkanediamine with water-soluble carnodiimide. Journal of Applied Polymer Science 65: 1889-1896. 112.Kunioka, M. and Goto, A. 1994. Biosynthesis of poly(γ-glutamic acid) from L-glutamic acid, citric acid, and ammonium sulfate in Bacillus subtilis IFO 3335. Applied Microbiology and Biotechnology 40: 867-872. 113.Kunno, A., Taguchi, T. and Yachi, T. 1988a. New use of polyglutamic acid for foods. EP 0284386. 114.Kunno, A., Taguchi, T. and Yachi, T. 1988b. Bakery products and noodles containing polygic acid. US Patent 4,888,193. 115.Kurane, R. and Nohata, Y. 1991. Microbial flocculation of waste liquids and oil emulsion by a bioflocclant from Alcaligenes latus. Agricultural and Biological Chemistry 55: 1127-1129. 116.Kurane, R., Takeda, K. and Suzuki, T. 1986. Screening for and characteristics of microbial flocculant. Agricultural and Biological Chemistry 50: 2301-2307. 117.Lee, I., Kim, M., Lee, J., Jung, J., Lee, H., Pary, Y. and Seo, W. 1999. Influence of agitation speed on production of curldan by Agroacterium species. Trends Biotechnol Bioproe Eng 20: 283-287. 118.Lee, S. H., Lee, S. O., Jang, K. L. and Lee, T. H. 1995. Microbial flocculant from Arcuadendron sp. TS-49.

Biotechnology Letters 17: 95-100. 119.Lee, S. Y. 1996. High cell density cultivation of Escherichia coli. Trends in Biotechnology 14: 98-105.

(5)

120.Leonard, C. G. and Housewright, R. D. 1963. Polyglutamic acid synthesis by cell-free extracts of Bacillus licheniformis. Biochimica et Biophysica Acta 73: 530-532. 121.Leonard, C. G., Housewright, R. D. and Thorne, C. B. 1958a. Effects of some metallic ions on glutamyl polypeptide synthesis by Bacillus subtilis. Journal of Bacteriology 76: 499-503. 122.Leonard, C. G., Housewright, R. D. and Thorne, C. B. 1958b.

Effects of metal ions on the optical specificity of glutamine synthetase and glutamyl transferase of Bacillus licheniformis. Biochimica et Biophysica Acta 62: 432-434. 123.Li, C., Ke, S. and Wn, Q. P. 2000. Tumor irradiation enhances the tumor-specific distribution of poly(γ-glutamic acid)-conjugation paclitaxel and it antitumor efficacy. Clinical Cancer Research 16: 2829-2834. 124.Li, C., Price, J. E., Milas, L., Hunter, N. R., Ke, S., Tansey, W., Charnsagavej, C. and Wallace, S. 1999. Antitumor activity of poly(L-glutamic acid)-paclitaxel on syngeneic and xenografted tumors. Clinical Cancer Research 5: 891-897. 125.Li, C., Yu, D. F., Newman, A., Cabral, F., Stephens, C., Hunter, N., Milas, L. and Wallace, S.

1998. Complete regression of well-established tumors using novel water-soluble poly(L-glutamic acid)-paclitaxel conjugate. Cancer Research 58:

2404-2409. 126.Liao, X., Liang, M. and Wu, X. 1997. Utilization of waste manure of pig husbandry in America. Ecology of domestic animal (China) 18: 27-30. 127.Macaskie, L. E. and Basnakova, G. 1998. Microbially-enhanced chemi-sorption of heavy metals: a method for the bioremediation of solutions containing long-lived isotopes of neptunium and plutonium. Environmental science and technology 32: 184-187.

128.Maeda, S., Kunimoto, K. K., Sasaki, C., Kuwae, A. and Hanai, K. 2003. Characterization of microbial poly (ε-L-lysine) by FT-IR, Raman and solid state 13C NMR spectroscopies. Journal of Molecular Structure 655: 149-155. 129.Makino, S., Sasakawa, C., Uchida, I., Terakado, N.

and Toshikawa, M. 1988. Cloning and CO2-dependent expression of the genetic region for encapsulation from Bacillus anthracis. Molecular Microbiology 2: 371-376. 130.Makino, S., Uchida, I., Terakado, N., Sasakawa, C. and Yoshikawa, M. 1989. Molecular characterization and protein analysis of the cap region, which is essential for encapsulation in Bacillus anthracis. Journal of Bacteriology 171: 722-730. 131.Margarita, K., Tangney, M. and Priest, F. G. 2001. Regulation of polyglutamic acid synthesis by glutamate in Bacillus licheniformis and Bacillus subtilis.

Applied and Environmental Microbiology 67: 1004-1007. 132.Margaritis, A. and Pace, G. 1985. Microbial polysaccharides. In: Blanch, H., Drew, S. and Wang, D. (Eds.), Comprehensive biotechnology in industry, agriculture and medicine. p. 1005-1044. Pergamon Press, Oxford, New York, USA. 133.Margaritis, A. and Zajic, J. 1978. Mixing mass transfer and scale-up of polysaccharide fermentations. Biotechnology and Bioengineering 20: 939-1001. 134.Mar?n, M. R. 1999. Alcoholic fermentation modeling: current state and perspectives. Journal of Enology and Viticulture 50:

166-178. 135.Markland, P., Amidon, G. L. and Yang, V. C. 1999. Modified polypeptides containing γ-benzyl glutamic acid as drug delivery platforms. International Journal of Pharmaceutics 178: 183-192. 136.Mccullough, H. 1967. The determination of ammonia in whole bolld by a direct colorimetric method. Clinica Chimica Acta 17: 297-304 137.McLean, R. C., Beauchemin, D. and Beveridge, T. J. 1992. Influence of oxidation state on iron binding by Bacillus licheniformis capsular. Applied and Environmental Microbiology 58: 405-408. 138.McLean, R. C., Wolf, D. C., Ferris, F. G. and Beveridge, T. J. 1990. Metal-binding characteristics of the gamma-glutamyl capsular polymer of Bacillus licheniformis ATCC 9945. Applied and Environmental Biotechnology 56: 3671-3677. 139.Minami, H., Suzuki, H. and Kumagai, H. 2003.

Salt-tolerant γ-glutamyl- transpeptidase form Bacillus subtilis 168 with glutaminase activity. Enzyme and Microbial Technology 32: 413-438.

140.Mitsuiki, M., Mizuo, A., Tanimoto, H. and Motoki, M. 1998. Relationship between the antifreeze activities and the chemical structures of oligo- and poly(glutamic acid)s. Journal of Agricultural and Food Chemistry 46: 891-895. 141.Moo-Yang, M., Halard, B., Allen, D., Burrell, R. and Kawase, Y. 1987. Oxygen transfer to mycelial fermentation broths in an airlift fermentor. Biotechnology and Bioengineering 30: 746-753.

142.Nagai, T., Koguchi, K. and Ito, Y. 1997. Chemical analysis of poly-γ-glutamic acid produced by plasmid-free Bacillus subtilis (natto) : evidence that plasmids are not involve in poly-γ-glutamic acid production. The Journal of General and Applied Microbiology 43: 139-143.

143.Nakamura, J., Miyashiro, S. and Hirose, Y. 1976. Conditions for production of microbial cell flocculant by Aspergillus sojae AJ7002.

Agricultural and Biological Chemistry 40: 1341-1347. 144.Noda, K., Igata, K., Horrikawa, Y. and Fujii, H. 1980. Synthesis γ-glutamyl peptides catalyzed by transamidase from Bacillus natto. Agricultural and Biological Chemistry 44: 2419-2423. 145.Ogawa, Y., Hosokawa, H., Hamano, M.

and Matai, H. 1991. Purification and properties of γ-glutamyltranspeptidase from Bacillus subtilis (natto). Agricultural and Biological Chemistry 55: 2971-2977. 146.Ogawa, Y., Yamaguchi, F., Yuasa, K. and Tahara, Y. 1997. Efficient production of γ-glutamic acid by Bacillus subtilis (natto) in jar fermenters. Bioscience, Biotechnology, and Biochemistry 61: 1684-1687. 147.Ohmomo, S., Daengsabha, W., Yoshikawa, H., Yui, M., Nozaki, K., Nakajima, T. and Nakamura, I. 1988b. Screening of anaerobic bacteria with the ability to decolorize molasses melanoidin. Agricultural and Biological Chemistry 57: 2429-2435. 148.Ohmomo, S., Kainuma, M., Kamimura, K., Sirianuntapiboon, S., Oshima, I. and Atthasumpunna, P. 1988a. Adsorption of melanoidin to the mycelia of Aspergillus oryzae Y-2-32. Agricultural and Biological Chemistry 52: 381-386. 149.Ohmomo, S., Kaneko, Y., Sirianuntapiboon, S., Somchai, P., Atthasumpunna, P. and Nakamura, I. 1987. Decolorization of molasses wastewater by a thermophilic strain Aspergillus fumigatus G-2-6. Agricultural and Biological Chemistry 51: 3339-3346. 150.Onodera, T., Ohmachi, T. and Asada, Y. 1994. Plasmid-independent poly(γ-glutamic acid) production in bacteria producing this acid de novo. Nippon N?geikaggaku Kaishi 68:

1475-1478. 151.Oppermann, F. B., Pickartz, S. and Steinb?chel, A. 1998. Biodegradation of polyamide. Polymer Degradation and Stability 59:

337-344. 152.Oppermann-sanio, F. B. and Steinb?chel, A. 2002. Occurrence, functions and biosynthesis of polyamides in microorganisms and biotechnological production. Die Naturwissenschaften 89: 11-22. 153.Otani, Y., Tabata, Y. and Ikada, Y. 1996a. A new biological glue from gelation and poly(L-glutamic acid). Journal of Biomedical Materials Research 31: 157-166. 154.Otani, Y., Tabata, Y. and Ikada, Y. 1996b. Rapidly curable biological glue composed of gelatin and poly(L-glutamic acid). Biomaterials 17: 1387-1391. 155.Otani, Y., Tabata, Y. and Ikada, Y. 1998a.

Effect of additives on gelation and tissue adhesion of gelatin-poly(L-glutamic acid). Biomaterials 19: 2167-2173. 156.Otani, Y., Tabata, Y. and Ikada, Y. 1998b. Hemostatic capability of rapidly curable from gelatin, poly(L-glutamic acid), and carbodiimide. Biomaterials 19: 2091-2098.

(6)

157.Park, C., Choi, J. C., Choi, Y. H. And Nakamura, H. 2005. Synthesis of super-high-molecular-weight poly-γ-glutamic acid by Bacillus subtilis subsp. chungkookjang. Journal of Molecular Catalysis B: Enzymatic 35: 128-133. 158.Park, T. G. and Hoffman, A. S. 1992. Synthesis and characterization of pH- and/or temperature sensitive hydrogels. Journal of Applied Polymer Science 46: 659-664. 159.Pe?a, M., Coca, M., Gonz?lez, G., Rioja, R. and Garc?a, M. T. 2003. Chemical oxidation of wastewater from molasses fermenetation with zone. Chemosphere 51:

893-900. 160.P?rez-Camero, G., Congregado, F., Bou, J. J. and Mu?oz-Guerra, S. 1999. Biosynthesis and ultrasonic degradation of bacterial poly(

γ-glutamic acid). Biotechnology and Bioengineering 63: 110-115. 161.Price, P. A. 1985. Vitamin K-dependent formation of bone gla protein (osteocalcin) and its function. Vitamins and Hormones 42: 64-108. 162.Rao, M., Cooley, M. J. and Vitali, A. A. 1984. Flow properties of

concentrated juices at low temperatures. Food Technology 38: 113-119. 163.Richard, A. and Margaritis, A. 2003a. Rheology, oxygen transfer, and molecular weight characteristics of poly(γ-glutamic acid) fermentation by Bacillus subtilis. Biotechnology and Bioengineering 82: 299-305.

164.Richard, A. and Margaritis, A. 2003b. Optimization of cell growth and poly(glutamic acid) production in batch fermentation by Bacillus subtilis. Biotechnology Letters 25: 465-468. 165.Roukas, T. and Mantzouridou, F. 2001. Effect of the aeration rate on pullulan production and fermentation broth rheology in an airlift reactor. Journal of Chemical Technology and Biotechnology 76: 371-376. 166.Rowinsky, K. E. and Donehower, R. C. 1995. Paclitaxel (Taxol). The New England Journal of Medicine 332: 1004-1014. 167.Saito, T., Iso, N., Mizuno, H., Kaneda, H., Suyama, Y., Kawamura, S. and Osawa, S. 1974. Conformation change of a natto mucin in solution. Agricultural and Biological Chemistry 38:

1941-1946. 168.Sakai, K., Sonoda, C. and Murase, K. 2000. Bitterness relieving agent. JP Pantent WO0021390. 169.Saravacos, G. D. 1970. Effect of temperature on viscosity of fruit juices and purees. Journal of Food Science 35: 122-125. 170.Sawa, S., Murakawa, T., Watanabe, T., Murao, S.

and Omata, S. 1973. Isolation and purification of polyglutamic acid produced by Bacillus subtilis no. 5E, and studies on its chemical properties (polyglutamic acid fermentation part VI). Nippon N?geikaggaku Kaishi 47: 159-165. 171.Sawamura, S. 1913. On Bacillus natto. Journal Collect Agriculture 5: 189-191. 172.Schevhter, B., Neumann, A. and Wilchek, M. 1989. Soluble polymers as carriers of cis-platinum. Journal of Controlled Release 10: 75-78. 173.Scragg, A. H. 1991. Bioreactors in biotechnology: a practical approach. New York: Ellis Horwood p.88-110. 174.Shih, I. L.

and Van, I. T. 2001. The production of poly-(γ-glutamic acid) from microorganisms and its various applications. Bioresource Technology 79:

207-225. 175.Shih, I. L. and Yu, Y. T. 2005. Simultaneous and selective production of levan and poly(γ-glutamic acid) by Bacillus subtilis.

Biotechnology Letters 27: 103-106. 176.Shih, I. L., Van, Y

參考文獻

相關文件

而在後續甲烷化反應試驗方面,以前段經厭氧醱酵產氫後之出流水為進流基 質。在厭氧光合產氫微生物方面,以光合作用產氫細菌中產氫能力最好的菌株 Rhodopseudomonas palustris

Mannocarolose, β-glucan, Amino acid nitrogen, Crude protein, Crude ash and

• The order of nucleotides on a nucleic acid chain specifies the order of amino acids in the primary protein structure. • A sequence of three

S3: And the products were the lipase fatty acid…no, no, fatty acid and glycerol and the enzyme remained unchanged. S1: Our enzyme was amylase and our substrate

In this paper, we build a new class of neural networks based on the smoothing method for NCP introduced by Haddou and Maheux [18] using some family F of smoothing functions.

gross profit margin, net profit margin, return on capital employed, working capital, current ratio and acid test ratio.. Use accounting ratios to evaluate a company’s profitability

In the citric acid cycle, how many molecules of FADH are produced per molecule of glucose.. 111; moderate;

This database includes antigen’s PDB_ID, all sites (include interaction and non-interaction) of a nine amino acid sequence of primary structure and secondary structure.. After