• 沒有找到結果。

Relation and Order

N/A
N/A
Protected

Academic year: 2022

Share "Relation and Order"

Copied!
17
0
0

加載中.... (立即查看全文)

全文

(1)

學數學

(2)

前言

學 學 數學 學 數學 . 學數學

論 . 學 , .

(Logic), (Set) 數 (Function) . , 學

論. 論 學 數學 .

, ,

. , .

, . , 論

, . , .

v

(3)
(4)

Chapter 4

Relation and Order

relation. Relation relation

relation. set relation.

relation, equivalence relation. Equivalence relation

, equivalence relation

set . 學 relation .

relation, order. Order ( ),

set .

4.1. Relation

sets X,Y . S X×Y nonempty subset, S relation

from X to Y . , X× X nonempty subset S relation on X.

relation S , x∼ y (x, y) S .

x∼ y x y , relation .

relation , (x, y)∈ S , .

Example 4.1.1. (1) X ={1,0,−1}, Y = {0,1,2}. S ={(x,y) ∈ X ×Y : y = x2+ 1}.

S X Y relation. relation 1∼ 2, 0 ∼ 1 −1 ∼ 2.

(2) X ={1,0,−1}. S ={(x,x)∈ X × X : x > x}. S X relation.

relation 1∼ 0, 1 ∼ −1 0∼ −1.

Question 4.1. X nonempty set. X relation S. S = X× X x, y∈ X x∼ y.

relation ,

Example 4.1.1(1) X ,Y 數 f (x) = x2+ 1 relation.

relation, , Example 4.1.1(2)

X relation.

55

(5)

relation X×Y , S

X ,Y . X ,Y ,

S X×Y . 論 relation .

Example 4.1.1 ( 數, ) S .

.

Example 4.1.2. X relation X “ ”

?

relation X , X power

set P(X) relation. S⊆ P(X) × P(X) A⊆ B

(A, B)∈ S. S ={(A,B) ∈ P(X) × P(X) : A ⊆ B}. relation

A∼ B A⊆ B .

, 論 relation. S relation

on X, , relation.

Reflexive: S x∈ X x∼ x,

(x, x)∈ S, ∀x ∈ X, relation reflexive.

Symmetric: S x, y∈ X x∼ y, y∼ x, (x, y)∈ S ⇒ (y,x) ∈ S, relation symmetric.

Transitive: S x, y, z∈ X x∼ y y∼ z, x∼ z, ((x, y)∈ S) ∧ ((y,z) ∈ S) ⇒ (x,z) ∈ S,

relation transitive.

, .

(1) S reflexive x∈ X (x, x) S. x∈ X

(x, x)∈ S reflexive. (x, y)∈ S x = y. 言 , S

reflexive, X x, (x, x) S ,

(x, y) x̸= y .

(2) S symmetric (x, y)∈ S (y, x) S.

(x, y) (y, x) S symmetric. 言 , S symmetric,

(x, y)∈ S (y, x)̸∈ S . symmetric,

symmetric.

(3) S transitive (x, y) (y, z) S , (x, z) S.

(x, y), (y, z) (x, z) S transitive. (x, y)∈ S

z∈ X (y, z)∈ S. S (x, y) S transitive. 言

(6)

4.1. Relation 57

, S transitive, (x, y), (y, z)∈ S (x, z)̸∈ S

. transitive, transitive.

Example 4.1.3. X ={1,2,3}, relation S⊆ X × X reflexive, symmetric transitive.

(1) S ={(1,1),(2,2)}, S reflexive, 3∈ X (3, 3)̸∈ S.

S ={(1,1),(2,2),(3,3),(1,2)}, S reflexive. S (x, y)

x̸= y ( (1, 2)∈ S) reflexive .

(2) S ={(1,1),(2,2)}, S reflexive, S symmetric. (1, 2),

S ={(1,1),(2,2),(1,2)}, (1, 2)∈ S (2, 1)̸∈ S, S symmetric. S (2, 1) ( S ={(1,1),(2,2),(1,2),(2,1)}) symmetric.

(3) S ={(1,1),(2,2),(1,2)}, S reflexive, symmetric, tran- sitive. (2, 3), S ={(1,1),(2,2),(1,2),(2,3)}, (1, 2), (2, 3)∈ S (1, 3)̸∈ S,

S transitive. S (1, 3) ( S ={(1,1),(2,2),(1,2),(2,3),(1,3)}) transitive.

Example reflexive, symmetric transitive .

. relation ,

. relation reflexive symmetric transitive.

, relation , .

relation reflexive symmetric transitive.

論 symmetric transitive reflexive.

Example 4.1.4. X set, S X relation. S symmetric

transitive, S reflexive? 論 ?

x∼ y, S symmetric, y∼ x. , x∼ y y∼ x,

transitive , x∼ x.

論 , S reflexive. , x∈ X,

y∈ X x∼ y, x∼ x. reflexive , x∈ X, x∼ x.

X x , y∈ X x∼ y,

x∼ x . X ={1,2,3} , S ={(1,1),(2,2),(1,2),(2,1)},

S symmetric transitive. 1 (

1∼ 2), 2 1 ( 2∼ 1), S symmetric transitive (1, 1),

(2, 2) S . , 3 , (3, 3) S .

(3, 3)̸∈ S, S symmetric transitive, S reflexive.

Question 4.2. X ={1,2,3} relation on X reflexive symmetric

, transitive . relation on X reflexive

transitive , symmetric .

(7)

Example 4.1.2 relation .

Example 4.1.5. X nonempty set. S ={(A,B) ∈ P(X) × P(X) : A ⊆ B}

P(X) relation. S reflexive. A∈ P(X),

A⊆ A ( Proposition 3.1.4(1)), (A, A)∈ S. S reflexive. S

transitive. (A, B)∈ S (B,C)∈ S, A⊆ B B⊆ C, A⊆ C (

Proposition 3.1.4(2)). (A,C)∈ S, S transitive. S symmetric.

, A, B∈ P(X) (A, B)∈ S (B, A)̸∈ S . A = /0 B = X

. /0∈ P(X) X∈ P(X) /0⊆ X, ( /0, X )∈ S. X̸= /0, X * /0, (X , /0)̸∈ S. S symmetric.

Question 4.3. X nonempty set. S ={(A,B) ∈ P(X) × P(X) : A ∪ B = X}

P(X) relation.

(1) S reflexive ? , S reflexive ?

(2) S symmetric ? , S symmetric ?

(3) S transitive ? , S transitive ?

4.2. Equivalence Relation

relation , equivalence relation.

, equivalence classes, .

數學 , .

cd, cd ?

. , 數學, ,

. . ,

, ;

; , .

X , , x, y ,

x∼ y . , 前 : ,

x∈ X x∼ x. relation reflexive. :

, x∼ y y∼ x.

relation symmetric. : ,

, x∼ y y∼ z x∼ z. relation transitive.

, X relation S reflexive, symmetric transitive

, relation ( x∼ y, x, y ),

. reflexive, symmetric

transitive relation . X

relation X× X subset , , X

relation .

(8)

4.2. Equivalence Relation 59

Definition 4.2.1. X relation, , relation

equivalence relation

Reflexive: x∈ X, x∼ x.

Symmetric: x, y∈ X x∼ y, y∼ x.

Transitive: x, y, z∈ X x∼ y y∼ z, x∼ z.

equivalence relation ? reflexive

. symmetric transitive

, ; A, B

, x A B . A a x a∼ x B

b x b∼ x. symmetric transitive a∼ b.

A B . A B

X equivalence relation. x∈ X,

{y ∈ X : y ∼ x}, X x . , x

equivalence class, [x] . , [x] x

. reflexive , [x] , x∼ x,

x∈ [x]. y∼ x, [x] = [y]. , z∈ [x], z∼ x.

y∼ x, symmetric transitive z∼ y, z∈ [y]. [x]⊆ [y]. [y]⊆ [x],

[y] = [x]. y̸∼ x ( (y, x)̸∈ S), 前 /0

, [y]∩ [x] = /0. 言 , X equivalence relation∼, X

equivalence classes . X /∼ X

equivalence relation equivalence classes. X /∼

X . X subsets ,

X partition, .

Definition 4.2.2. X set, I index set. i∈ I, Ci X nonempty subset X =

i∈I

Ci Ci∩Cj= /0, for i̸= j, {Ci: i∈ I} X partition.

X partition, X . 前 ,

X equivalence relation, equivalence relation equivalence classes (

) X partition. , X

partition X =

i∈I

Ci, x, y∈ X, x∼ y x, y∈ Ci, for some i∈ I (

), , equivalence relation.

X =

i∈I

Ci, x∈ X, i∈ I, x∈ Ci, x∼ x (

reflexive). x∼ y, x, y∈ Ci, for some i∈ I, y, x∈ Ci, y∼ x ( symmetric). x∼ y, y ∼ z, i, j∈ I x, y∈ Ci, y, z∈ Cj. y∈ Ci∩Cj,

i̸= j Ci∩Cj= /0 i = j. x, z∈ Ci, x∼ z ( transitive).

.

(9)

Theorem 4.2.3. X set.

(1) X equivalence relation, {[x] : [x] ∈ X/ ∼} X partition.

(2) I index set {Ci: i∈ I} X partition, x, y∈ X, x∼ y x, y∈ Ci, for some i∈ I, X equivalence relation.

Example 4.2.4. 數 Z 2 數 C1={2n : n ∈ Z}, 3

C2={3n : n ∈ Z} 5 數 C3={5n : n ∈ Z}, {C1,C2,C3}

Z partition. 7 2, 3 5 數 ( 7̸∈ C1∪C2∪C3),

Z ̸= C1∪C2∪C3. C1∩C2̸= /0, 6∈ C1∩C2. C1∩C3̸= /0, C2∩C3̸= /0.

Z 3 subset C1={n : n = 3m,m ∈ Z},C2={n : n = 3m + 1,m ∈ Z}

C3 ={n : n = 3m + 2,m ∈ Z}, {C1,C2,C3} Z partition. ,

C1,C2,C3 3 數 0, 1 2 .

Z = C1∪C2∪C3, C1∩C2= C1∩C3= C2∩C3= /0. partition, Z equivalence relation x∼ y x, y∈ Ci, for some i∈ {1,2,3}. x, y∈ C1

x = 3m, y = 3m for some m, m∈ Z x− y = 3(m − m), 3| x − y ( 3 x− y). x, y∈ C2 x, y∈ C3, 3| x − y. equivalence relation

x∼ y 3| x − y. equivalence relation. x∈ Z,

3| x−x, x∼ x. x∼ y, 3| x−y, 3| −(x−y). 3| y−x, y∼ x. x∼ y y∼ x, 3| x −y 3| y−z. 3| (x −y)+(y −z), 3| x −z.

x∼ z. C1= [0] = [4], C2= [1] = [−3] C3= [2] = [11]... . Z/ ∼= {[0],[1],[2]}.

Question 4.4. 數 m, I ={0,1,...,m−1} index set. Z partition, Ci={mk + i : k ∈ Z}, i ∈ I. partition equivalence relation ?

equivalence relation partition ,

學 數學 論 . 前 .

數. .

Proposition 4.2.5. X finite set, equivalence relation equivalence classes C1, . . . ,Cn. #(X ) #(Ci) 數,

#(X ) =

n i=1

#(Ci).

Proof.i̸= j , Ci∩Cj= /0. Ci .

X Ci , XC1, . . . ,Cn

數 . 

Example 4.2.6. A ={1,2,3} X =P(A). X relation,

B,C∈ X, B ∼ C #(B) = #(C). X equivalence relation.

, B∈ X, #(B) = #(B), B∼ B. B∼ C, #(B) = #(C),

(10)

4.3. Order Relation 61

#(C) = #(B), C∼ B. B∼ C C∼ D, #(B) = #(C) #(C) = #(D)

#(B) = #(D). B∼ D.

equivalence relation equivalence classes X =P(A) parti-

tion. partition:

: {/0}

: {{1},{2},{3}}.

: {{1,2},{1,3},{2,3}}.

: {{1,2,3}}.

equivalence classes 數 (3

0

), (3

1

), (3

2

), (3

3

). Proposition

4.2.5 (

3 0 )

+ (3

1 )

+ (3

2 )

+ (3

3 )

= #(X ) = #(P(A)) = 23= 8.

Question 4.5. n 數, A ={1,2,...,n} X =P(A). X relation, B,C∈ X, B ∼ C #(B) = #(C). m∈ N 0 < m < n, {1,2,...,m}

equivalence class?

(n 0 )

+ (n

1 )

+··· + ( n

n− 1 )

+ (n

n )

= 2n.

4.3. Order Relation

數學 relation order relation, .

relation, relation ,

order relation.

relation , “ ”

. , ,

“ ”, “≼” .

Definition 4.3.1. X nonempty set X relation.

, X partial order.

(1) x∈ X, x≼ x.

(2) x, y∈ X x≼ y y≼ x, x = y.

(3) x, y, z∈ X x≼ y y≼ z, x≼ z.

Definition 4.3.1 (1) reflexive , (3) transitive

. (2) symmetric . x̸= y,

x≼ y y≼ x. S⊆ X ×X relation, x̸= y ,

(x, y) (y, x) S , anti-symmetric. X

partial order, (X ,≼) poset.

(11)

Example 4.3.2. A nonempty set, X =P(A). X relation⊆, (X ,⊆) poset.

Question 4.6. A nonempty set, X =P(A). X relation ⊇,

(X ,⊇) poset?

Question 4.7. 數 R ≤, (R,≤) poset? (R,≥)

poset?

poset (X,≼) , x, y∈ X x≼ y y≼ x, x, y comparable

( ). Definition 4.3.1 “partial” order,

X comparable. A ={1,2} , P(A)

partial order. {1},{2} ∈ P(A) comparable, {1} ⊆ {2} {2} ⊆ {1}

. 數 (R,≤) poset comparable .

order relation.

Definition 4.3.3. X nonempty set X relation.

, X total order.

(1) x, y∈ X x≼ y y≼ x, x = y.

(2) x, y, z∈ X x≼ y y≼ z, x≼ z.

(3) x, y∈ X, x≼ y y≼ x.

Definition 4.3.3 (3) comparable, total

. (3) , reflexive, x, y ,

, x≼ x. total order partial order (

). X total order, (X ,≼) total ordered set.

total order linear order simple order.

Question 4.8. 數 R <, (R,<) total ordered set?

前 order “ ”, x≼ x x = x.

< order ? , (X ,≼)

total ordered set, x≺ y x≼ y x̸= y. ,

X strict total order. .

Definition 4.3.4. X nonempty set X relation.

, X strict total order.

(1) x, y, z∈ X x≺ y y≺ z, x≺ z.

(2) x, y∈ X, x = y, x≺ y y≺ x , .

Definition 4.3.4 , (2) trichotomy ( ).

(12)

4.3. Order Relation 63

Example 4.3.5. 數 C strict order.

a + bi, c + di∈ C, a, b, c, d ∈ R i2 =−1. (a + bi)≺ (c + di) (1) a < c (2) a = c b < d. (C,≺) strict total ordered set.

transitive . a + bi, c + di, e + f i∈ C a, b, c, d, e, f ∈ R (a + bi)≺ (c + di)

(c + di)≺ (e + fi). , a≤ c c≤ e, a≤ e.

論: ( ) a < e, (a + bi)≺ (e + fi); ( ) a = e, a = c = e. (a + bi)≺ (c + di) b < d, (c + di)≺ (e + fi) d < f .

b < f , (a + bi)≺ (e + fi). transitive . ,

a + bi̸= c + di,a̸= c b̸= c. a̸= c,a < c

c < a, (a + bi)≺ (c + di) (c + di)≺ (a + bi). a = c, b̸= d,

(a + bi)≺ (c + di) (c + di)≺ (a + bi).

comparable, trichotomy .

(C,≺) strict total ordered set 數 < order.

數 ? . , 數 數

sets, . order

. 數 :

A: a < b, c a + c < b + c.

M: a < b, 0 < c ac < bc.

A. M.

0≺ i, M , 0× i ≺ i × i, 0≺ −1. ,

M.

, C strict total order

數 A M. (C,≺) , ,

0≺ i i≺ 0 . 0≺ i, M 0≺ −1,

. i≺ 0, A i + (−i) ≺ 0 + (−i), 0≺ −i. M,

0× (−i) ≺ (−i) × (−i), 0≺ −1, 數 . C

strict total order , 數 .

Question 4.9. (C,≺) strict total ordered set Example 4.3.5 A

M, C z, 0≺ z2.

strict total order total order. 前 , total ordered set (X ,≼), strict total order.

Proposition 4.3.6. (X ,≼) total ordered set. x≺ y x≼ y

x̸= y, , X strict total order.

Proof. transitive , x, y, z∈ X x≺ y y≺ z, x≺ z.

x≺ y x≼ y x̸= y, y≺ z y≼ z y̸= z. total order transitive

(13)

, x≼ z. x̸= z. , x = z, x≼ y z≼ y.

y≼ z, total order anti-symmetric , y = z. y≺ z ( y ̸= z) , x̸= z. x≺ z.

trichotomy . total order total , x, y∈ X,

x≼ y y≼ x. x = y, x, y x = y. x̸= y, x≼ y y≼ x,

x≺ y y≺ x. x, y x = y, x≺ y y≺ x. x, y x = y, x≺ y

y≺ x . x = y, x≺ y y≺ x . x̸= y

x≺ y, y ≺ x . x≺ y, y ≺ x ,

x≼ y y≼ x. anti-symmetric , x = y. x̸= y .

x≺ y, y ≺ x . 

, X strict total order, x, y∈ X, x≼ y

x = y x≺ y, X total order.

Question 4.10. X nonempty set X strict total order.

x, y∈ X, x≼ y x = y x≺ y, X total order.

, X total order strict total order,

. 論 total order , strict total order .

, total order, strict total order,

.

order , , . (X ,≼)

poset. X T , u∈ X T upper bound, T

t t≼ u. u∈ X T upper bound T upper bound u,

u≼ u, u T least upper bound. , l∈ X T lower

bound, T t l≼ t. l∈ X T lower bound

T lower bound l, l≼ l, l T greatest lower bound.

, poset (X,≼) nonempty subset upper bound lower

bound. upper bound lower bound, least upper bound greatest

lower bound . :

Example 4.3.7. (A) (R,≤) total ordered set. T ={x ∈ R : 0 < x < 1}.

1 數 T upper bound, 1 T least upper bound.

0 數 T lower bound, 0 T greatest lower bound. {x ∈ R : x ≥ 0}, upper bound. {x ∈ R : x < 1}, lower bound.

(B) (Q,≤) total ordered set. T ={x ∈ Q :√

2 < x <√

3}.

3

T upper bound,

2 數 T lower bound. T

least upper bound. u∈ Q T least upper bound,

3 < u, 3

u 數 ( ), u∈ Q

3 < u< u.

(14)

4.3. Order Relation 65

u T upper bound u, u T least upper bound ,

T least upper bound. T greatest lower bound.

(C) nonempty set A, (P(A),⊆) poset. P(A) nonempty

subset T , A T upper bound, B∈ T, B⊆ A. /0 T

lower bound. T least upper bound , U =

B∈T

B T least

upper bound. B∈ T, B⊆ U, U T upper bound.

U∈ P(A) T upper bound, B∈ T, B⊆ U, Corollary 3.3.4, U =

B∈T

B⊆ U. U =

B∈T

B T least upper bound. A ={1,2,3,4} ,

T ={{1,2},{1,3}}. {1,2} ∪ {1,3} = {1,2,3} T least upper bound.

Question 4.11. nonempty set A, (P(A),⊆) poset. P(A) nonempty subset T , T greatest lower bound .

, poset (X,≼) nonempty subset T , least upper bound

, . u, u∈ X T least upper

bound, u least upper bound u upper bound, u≼ u. u≼ u, partial order anti-symmetric u = u. T greatest lower bound

, . .

Proposition 4.3.8. (X ,≼) total ordered set T X nonempty subset. T

least upper bound , . T greatest lower bound , .

(X ,≼) total ordered set , least upper bound greatest lower bound

. u∈ X T least upper bound, x≺ u,

x T upper bound. x T upper bound u≼ x

( strict total order, , x≺ u u≼ x ).

論.

Proposition 4.3.9. (X ,≼) total ordered set, T X nonempty subset u∈ X T least upper bound. x∈ X x≺ u, t∈ T x≺ t.

Proof. , t∈ T x≺ t , t∈ T x≺ t.

X strict total order, , x≺ t, t ≺ x x = t .

t∈ T x≺ t t∈ T t≼ x. x T upper bound.

u T least upper bound, u≼ x. x≺ u 前 .

t∈ T x≺ t. 

Question 4.12. (X ,≼) total ordered set, T X nonempty subset l∈ X

T greatest lower bound. x∈ X l≺ x, t∈ T t≺ x.

poset (X,≼) nonempty subset T . ,

poset . poset comparable,

(15)

T , maximal element of T , T

. µ ∈ T t∈ T µ ≺ t, µ T maximal element.

, greatest element of T ( maximum element), T

. g∈ T t∈ T t≼ g, g T greatest

element. . m∈ T t∈ T t≺ m, m T

minimal element. l∈ T t∈ T l≼ t, l T least element

( minimum element). , T upper bound lower bound

T , T maximal element, greatest element minimal element, least element

T . upper bound lower bound, ,

. .

Example 4.3.10. (A) (R,≤) total ordered set. T ={x ∈ R : 0 < x < 1}.

T maximal element. µ ∈ T 0 <µ < 1,

t = (µ + 1)/2, 0 < t < 1, t∈ T µ < t. T maximal element. T

minimal element. T={x ∈ R : 0 ≤ x ≤ 1}. 1 T

maximal element greatest element, 0 T minimal element least element.

(B) A ={1,2,3} (P(A),⊆) poset. T ={{1},{1,2},{2,3},{1,2,3}}.

{1,2,3} T maximal element greatest element. {1} T minimal element

B∈ T B⊂ {1}. {1} T least element, {2,3} ∈ T

{2,3} {2,3} ⊆ {1}. {2,3} T minimal element, B∈ T

B⊂ {2,3}. T={{1},{1,2},{2,3}}. T greatest element,

{1,2} {2,3} T maximal element. {2,3} T

maximal element minimal element.

Example 4.3.10 maximal element minimal element .

greatest element least element , . .

Proposition 4.3.11. (X ,≼) poset, T nonempty subset T greatest

element . T greatest element . T maximal element

, T maximal element T greatest element, T least upper bound.

Proof. , greatest element . g, g∈ T T greatest

element g̸= g. g∈ T g T greatest element, g≼ g.

g≼ g. partial order anti-symmetric , g≼ g g≼ g g = g

. .

g∈ T T greatest element. t∈ T g≼ t, reflexive g = t.

言 , t∈ T g≺ t. g T maximal element. T maximal

element . µ ∈ T T maximal element. µ ∈ T, µ ≼ g.

maximal element g∈ T µ ≺ g , µ = g.

(16)

4.3. Order Relation 67

T maximal element T greatest element g, T maximal

element .

greatest element , t∈ T t≼ g, g T upper bound.

T upper bound u, g∈ T, upper bound , g≼ u, g

T least upper bound. 

Question 4.13. (X ,≼) poset, T nonempty subset T least element

. T least element , T minimal element .

T minimal element T least element, T greatest lower bound.

Question 4.14. (X ,≼) poset T nonempty subset. T least upper

bound u u∈ T T greatest element . , T greatest

lower bound l l∈ T T least element .

(X ,≼) poset, T nonempty subset, Proposition 4.3.11 Question 4.13 T greatest element T maximal element greatest element,

T least element T minimal element least element. (X ,≼)

partial ordered set total ordered set , comparable

maximal element greatest element minimal element least element.

(X ,≼) total ordered set maximal element greatest element , minimal element least element .

Proposition 4.3.12. (X ,≼) total ordered set, T nonempty subset. T maximal element , T maximal element T greatest element.

Proof. µ ∈ T T maximal element. t∈ T, µ ≺ t ,

t≼µ. µ T greatest element. 

Question 4.15. (X ,≼) total ordered set, T nonempty subset. T minimal element , T minimal element T least element.

, well order, .

Definition 4.3.13. (X ,≼) total ordered set. X nonempty subset T least element , (X ,≼) well-ordered set.

數 , well-ordered set.

數 , well-ordered set. 數

least element.

數 學 , Well-ordering

Theorem . nonempty set X, total order

(X ,≼) well-ordered set.

(17)

Example 4.3.14. 數 Z, well-

ordered set. total order (Z,≼) well-ordered set.

relation: a, b∈ Z, a≼ b (1) |a| < |b| (2) |a| = |b| a≤ b.

(Z,≼) total ordered set. a≼ b b≼ a, |a| = |b| ( |a| < |b|

|b| < |a| ) a≤ b b≤ a, a = b, anti-symmetric .

a≼ b b≼ c, |a| ≤ |b| |b| ≤ |c|, |a| ≤ |c|. |a| < |c| a≼ c.

|a| = |c|, |a| = |b|, a≼ b a≤ b. |b| = |c|, b≼ c

b≤ c. |a| = |c| a≤ c, a≼ c. transitive

. total , a, b∈ Z |a|,|b| , |a| = |b|,

a, b , a, b∈ Z comparable, total . ,

0≺ −1 ≺ 1 ≺ −2 ≺ 2··· .

(Z,≼) total ordered set well-ordered set. Z nonempty

subset T , T . ,

T least element. , T

least element. order , T least element. (Z,≼) well-ordered set.

Question 4.16. Z relation: a, b∈ Z a≼ b (1)

ab≥ 0 |a| ≤ |b| (2) ab < 0 a≤ b.

0≺ −1 ≺ −2 ≺ −3··· ≺ 1 ≺ 2 ≺ 3··· .

(Z,≼) total ordered set. (Z,≼) well-ordered set?

Well-ordering Theorem Zorn’s Lemma Axiom of Choice ,

function 論.

參考文獻

相關文件

(a) Loosely speaking, Fubini’s Theorem says that the order of integration of a function of two variables does not affect the value of the double integral, while Clairaut’s Theorem

論 Zorn’s Lemma Axiom of Choice ( Well-ordering Theorem).

Well-ordering Theorem Zorn’s Lemma Axiom of Choice ,..

Lemma 4.5.. Then, the proof is complete.. By Theorem 4.1 and Theorem 4.6, the conclusion is drawn. Baes, Convexity and differentiability properties of spectral functions and

As illustrated in the next section, some of these functions are the key of penalty and barrier function methods for second-order cone programs (SOCPs), as well as the establishment

Some of these functions are the key of penalty and barrier function methods for second-order cone programs (SOCPs), as well as the establishment of some important

 我們可以利用 Lemma 3.1.3 很快的得到 congruent relation 是一個 equivalent relation..

並舉例說明存在 relation on X 滿足 reflexive 以及 transitive 的性質, 但不滿足 symmetric 的性質.... Relation