• 沒有找到結果。

1 + u + v (2)Area of surface = Z 1 0 Z 1 0 √1 + u + v du dv (4 pts

N/A
N/A
Protected

Academic year: 2022

Share "1 + u + v (2)Area of surface = Z 1 0 Z 1 0 √1 + u + v du dv (4 pts"

Copied!
7
0
0

加載中.... (立即查看全文)

全文

(1)

982微積分甲08-13班期末考解答與評分標準

1. (8%) Evaluate Z 4

0

Z 2

y 2

ex2dx dy.

Sol:

Z 4 0

Z 2

y 2

ex2dxdy

= Z Z

D

ex2dA

= Z 2

0

Z 2x

0

ex2dydx (4 pts)

= Z 2

0

2xex2dx (2 pts)

= ex2¯¯¯2

0

= e4− 1 (2 pts)

2. (10%) Find the area of the surface z = 2

3(x32 + y32), 0≤ x, y ≤ 1.

Sol:

Parametrization:

x = µ

u, v,2 3

³

u32 + v32

´¶

and u, v ∈ [0, 1]

xu =

³ 1, 0, u12

´

xv =

³ 0, 1, v12

´

(3 pts) (xu× xv) =

³−u12,−v12, 1

´

|xu× xv| =√

1 + u + v

(2)

Area of surface = Z 1

0

Z 1

0

√1 + u + v du dv (4 pts)

= 2 3

Z 1 0

h

(1 + u + v)32 i1

0

dv

= 2 3

Z 1 0

(2 + v)32 − (1 + v)32 dv

= 4 15

h

(2 + v)52 − (1 + v)52i1 0

= 4 15

h

352 − 252 − 252 + 1 i

(3 pts)

Calculation errors: −1 pt.

Minor mistakes: −1 pt.

3. (10%) Evaluate Z 2

−2

Z 4−x2

4−x2

Z 4−x2−y2 0

(x2+ y2) dz dy dx.

Sol:

Z 2

−2

Z 4−x2

4−x2

Z 4−x2−y2

0

(x2+ y2) dzdydx

= Z

0

Z 2 0

Z 4−r2 0

r2· r dzdrdθ (x = r cos θ, y = r sin θ) (5 pts)

= 32π

3 (5 pts) 4. (10%) Evaluate

ZZ

x2+xy+y2≤1

e−(x2+xy+y2)dx dy.

Sol:

ZZ

x2+xy+y2≤1

e−(x2+xy+y2)dxdy

= ZZ

(x+y/2)2+(

3y/2)2≤1

e−((x+y/2)2+(3y/2)2)dxdy

= ZZ

u2+v2≤1

eu2+v2|

¯¯¯¯

¯¯¯

1 −1/√ 3 0 2/√

3

¯¯¯¯

¯¯¯|dudv (4 pts)

= 2

3 Z

0

Z 1 0

e−r2rdrdθ (前面做對,到此累計得 7 pts)

=2π(1− e−1)

3 (前面做對,到此累計得 10 pts)

5. (16%) Let F(x, y, z) = y2i + (2xy + e3z)j + 3ye3zk

(3)

(a) Find the potential function of F.

(b) Compute the line integral Z

C

F· dr, where C : r(t) = h4t, 3 cos t, 3 sin ti, 0 ≤ t ≤ π 2. Sol:

(a) F (x, y, z) = (2xy, 2xy + e3z, 3ye3z).

Assume f is the potential function (Real value function such that ∇f = F ), then fx = 2xy imply f (x, y, z) = xy2+ h(y, z).

Then take derivative with y variable on both side we got fy = 2xy + hy(y, z).

By definition of F we also have, hy(y, z) = e3z ⇒ h(y, z) = ye3z+ g(z).

Since fz = 3ye3z, this imply fz = hz = 3ye3z+ gz(z) = 3ye3z, i.e, gz = 0.

So f = xy2+ ye3z+ C for some constant.

(b)

Z

C

F dr = Z

C

∇fdr = f(r(π/2)) − f(r(0))

= f (2π, 0, 3)− f(0, 3, 0) = 2π × 02+ 3× 0 × e0− (0 × 32+ 3e0) =−3 評分標準:

(a) If the answer is right then you got 8 point.

If not, you can gain 2 at each step while you are trying to solve h and g.

(b) Z

C

F dr = Z

C

∇fdr = f(r(π/2)) − f(r(0)) This step cost 4 point.

= f (2π, 0, 3)− f(0, 3, 0) This step cost 2 point.

= 2π× 02+ 3× 0 × e0− (0 × 32+ 3e0) =−3. Answer cost 2 point.

6. (16%) Let P = y3

(x2+ y2)2, Q = xy2

(x2+ y2)2. Let C be the counterclockwise ellipse x2

9 + y2

16 = 1, and D be the region inside C but outside the unit circle x2+ y2 = 1.

(a) Evaluate ZZ

D

³∂Q

∂x ∂P

∂y

´ dA.

(b) Evaluate Z

C

P dx + Q dy.

(4)

Sol:

(a) ∂Q

∂x = 3x2y2− y4

(x2+ y2)3 (2 pts), ∂P

∂y = 3x2y2 − y4

(x2+ y2)3 (2 pts) so ∂Q

∂x ∂P

∂y = 0 ZZ

D

(∂Q

∂x ∂P

∂y)dA = 0 (2 pts)

(b) Let E be the counterclockwise unite circle. Then ∂D = C∪ E By Green theorem,

Z Z

D

(∂Q

∂x −∂P

∂y)dA = Z

C

P dx + Qdy + Z

−E

P dx + Qdy So

Z

C

P dx + Qdy = Z

E

P dx + Qdy (4 pts) To compute

Z

E

P dx + Qdy, parametrize E ={(cos θ, sin θ)|0 ≤ θ ≤ 2π}}

Then Z

C

P dx + Qdy = Z

E

P dx + Qdy = Z

0

(sin θ)3d cos θ− cos θ(sin θ)2d sin θ (2 pts)

= Z

0

[−(sin θ)4− (cos θ)2(sin θ)2]dθ

= Z

0

[−(sin θ)2]dθ = Z

0

h1− cos 2θ 2

i

(2 pts)

=−θ

2 +cos 2θ 4

¯¯¯

0

=−π (2 pts)

7. (10%) Evaluate ZZ

S

x2

p1 + x2+ y2 dS, where S is the helicoid with equation r(u, v) = u cos vi + u sin vj + vk, 0≤ u ≤ 1, 0 ≤ v ≤ 2π.

Sol:

γu = (cos v , sin v , 0 ) γv = (−u sin v , u cos v , 1 ) γu× γv = (sin v ,− cos v , u) (3 pts)

| γu× γv | =√

u2+ 1 (2pts)

(5)

We have

ZZ

S

x2

p1 + x2+ y2dS = Z

0

Z 1 0

u2cos2v

√1 + u2

√1 + u2du dv (2 pts)

= Z

0

Z 1 0

u2cos2v du dv

= π

3 (3 pts) 8. (10%) Compute the integral

ZZ

S

curlF·dS, where F(x, y, z) = (ez2+ y)i + (4z−y)j+(8x sin y)k and S is the part of z = 4− x2− y2 above the xy-plane with orientation given by the upward unit normal vector.

Sol:

Solution 1: By Stokes’ Theorem

ZZ

S

curlF· dS = I

∂S

F· dr (2 pts)

The boundary of S is the circle r(t) = 2 cos ti + 2 sin tj + 0k. (2 pts) And

r0(t) = (−2 sin ti + 2 cos tj + 0k) (1 pt)

= I

∂S

F(r(t))· r0(t) dt (2 pts)

= Z

0

((e02 + 2 sin t)i + (4× 0 − 2 sin t)j

+ (8 cos t sin(sin t))k)· (−2 sin ti + 2 cos tj + 0k) dt (1 pt)

= Z

0

−2 sin t − 4 sin2t− 4 sin t cos t dt (1 pt)

= Z

0

−2 sin t − 2 + 2 cos 2t − 2 sin 2t dt

= (2 cos t− 2 + 2 sin 2t + 2 cos 2t)¯¯¯

0

=−4π (1 pt)

Solution 2: curlF = (8x cos y− 4)i + (2zez2 − 8 sin y)j − k (2 pts) The surface of S is S(x, y) = (x, y, 4− x2− y2) (1 pt)

(6)

Sx = (1, 0,−2x), Sy = (0, 1,−2y), Sx× Sy = (−2x, 2y, 1) (2 pts) ZZ

S

curlF· dS = ZZ

D

(8x cos y− 4)i + (2zez2 − 8 sin y)j − k · (−2x, 2y, 1) dA (2 pts)

Because of the symmetric ZZ

S

dA =−4π (3 pts)

Solution 3: curlF = (8x cos y− 4)i + (2zez2 − 8 sin y)j − k (2 pts)

Let D be the disk 0 = 4− x2− y2 where the orientation given (0, 0,−1) ZZ

S

curlF· dS = ZZZ

V

div(curlF)dV ZZ

D

curlF· dA (4 pts)

= 0 ZZ

D

dA =−4π (3 pts)

(1 pt for knowing ZZZ

V

div(curlF)dV = 0)

Solution 4: By Stokes’ Theorem

ZZ

S

curlF· dS = I

∂S

F· dr (2 pts)

curlF = (8x cos y− 4)i + (2zez2 − 8 sin y)j − k (2 pts)

Let D be the disk 0 = 4− x2− y2 where the orientation given (0, 0, 1) By Stokes’ Theorem

I

∂S

F· dr = ZZ

D

curlF· dA (3 pts)

= ZZ

D

dA =−4π (3 pts)

9. (10%) Evaluate ZZ

S

F·dS, where F(x, y, z) = 2y2j−zk and S is the surface of the solid enclosed by y = x2+ z2 and y = 1 with outward normal vector.

Sol:

method 1: Let F = P i + Qj + Rj = 0i + 2y2j− zk, then divF = ∂P

∂x + ∂Q

∂y +∂R

∂z = 4y− 1 (2 pts) By the divergence theorem, we have

ZZ

S

F· dS = ZZZ

R

divF dV (3 pts)

(7)

where R is the region bounded by S. Hence ZZ

S

F· dS = Z

0

Z 1 0

Z 1 r2

(4y− 1)r dydrdθ (3 pts)

= 2π Z 1

0

r− 2r5+ r3dr =

6 (2 pts) method 2:

ZZ

S

F· dS = ZZ

S

F· n dS

= ZZ

S1

F· n dS + ZZ

S2

F· n dS (2 pts)

where n is the outer normal of S, S1 = S ∩ {y = x2+ z2}, and S2 = S ∩ {y = 1}.

ZZ

S1

F· n dS = ZZ

A

(0, 2(x2+ z2)2,−z) · (2x, −1, 2z) dA (3 pts)

= Z

0

Z 1 0

(−2r4− 2r2sin2θ)r drdθ

=−7π

6 (3 pts) ZZ

S2

F· n dS = ZZ

A

(0, 2,−z) · (0, 1, 0) dA

= Z

0

Z 1 0

2rdrdθ = 2π (2 pts)

參考文獻

相關文件

EQUIPAMENTO SOCIAL A CARGO DO INSTITUTO DE ACÇÃO SOCIAL, Nº DE UTENTES E PESSOAL SOCIAL SERVICE FACILITIES OF SOCIAL WELFARE BUREAU, NUMBER OF USERS AND STAFF. 數目 N o

Valor acrescentado bruto : Receitas mais variação de existências, menos compras de bens e serviços para revenda, menos comissões pagas, menos despesas de exploração. Excedente

Valor acrescentado bruto : Receitas do jogo e dos serviços relacionados menos compras de bens e serviços para venda, menos comissões pagas menos despesas de

Valor acrescentado bruto : Receitas do jogo e dos serviços relacionados menos compras de bens e serviços para venda, menos comissões pagas menos despesas de

[r]

1 pt for the

[r]

[r]