• 沒有找到結果。

Investigating in OFDM Systems with SC Diversity Operating over Correlated-Weibull Frequency Selective Fading Channels 林聖傑、陳雍宗

N/A
N/A
Protected

Academic year: 2022

Share "Investigating in OFDM Systems with SC Diversity Operating over Correlated-Weibull Frequency Selective Fading Channels 林聖傑、陳雍宗"

Copied!
2
0
0

加載中.... (立即查看全文)

全文

(1)

Investigating in OFDM Systems with SC Diversity Operating over Correlated-Weibull Frequency Selective Fading Channels

林聖傑、陳雍宗

E-mail: 9606962@mail.dyu.edu.tw

ABSTRACT

In this paper the system performance of OFDM (orthogonal frequency division multiplexing) with the cases of MRC (maximal ratio combining) and dual branch SC (selective combining) diversities over correlated-Gamma distributed and correlated-Weibull fading, respectively, are investigated. Since the reason of an alternative expression of the Q-function is adopted for deriving the results of average BER (bit-error rate) of the OFDM system, the obtained formulas are not only calculated much simpler but the conducting of numerical analysis is also arrived at easily and accurate. It is valuable to claim that the system performance of the OFDM system is definitely dominated by the propagation environments, which is decided by the fading parameters both of the Nakagami-m and Weibull distributed, of the transmission of the radio systems. Furthermore, both of the conditions of equal and unequal signal intensities at the output of SC diversities are adopted as the scenarios for the discussion of OFDM systems.

Keywords : OFDM signaling ; MRC ; SC ; Nakagami-m fading ; Weibull fading Table of Contents

封面內頁 簽名頁 博碩士論文暨電子檔案上網授權書... iii 中文摘要... iv 英文摘 要... v 誌謝... vi 目錄... vii 圖目

錄... x 第一章 緒論... 1 1.1 研究動機與目的... 1 1.2論文綱 要... 3 第二章 正交分頻多工系統... 4 2.1 OFDM基本原理... 4 2.2 OFDM 連續時間的模型... 8 2.3 OFDM系統離散時間模型... 10 2.4 OFDM系統之傅立葉轉

換... 10 2.5 OFDM系統與QAM調變結合之分析... 12 2.5.1 QAM-OFDM的工作原理... 16 第 三章 無線通訊衰落通道... 20 3.1無線通道信號衰落... 20 3.2衰落的形式分類... 22 3.2.1小尺度衰落... 22 3.2.1.1時間延遲擴散... 22 3.2.1.2時域上的變動性... 23 3.2.2大尺度衰落... 25 3.3衰落通道的數學模型... 25 3.4多重路徑及多重衰落...

26 3.5多重路徑衰落所造成的效應... 27 3.6通道統計分佈... 28 3.6.1 Normal (Gaussian) 衰落分 佈... 28 第四章 分集合成技術... 31 4.1分集合成技術... 31 4.1.1極化分

集... 32 4.1.2頻率分集... 33 4.1.2.1 選擇性合成... 34 4.1.2.2 最大比例合 成... 35 4.1.3空間分集... 37 4.1.4時間分集... 38 第五章 OFDM系統結合 最大比例合成和雙分支選擇性合成分集 於衰落環境中之效能分析... 40 5.1系統模型... 40 5.2衰落通道的PDF... 43 5.2.1加總之後的Nakagami-m統計分布... 43 5.3具相關性的瑋布分

佈... 44 5.4錯誤率效能分析... 48 5.4.1 OFDM系統結合雙分支SC合成之分析... 48 5.4.2 OFDM系統結合MRC合成之分析... 50 第六章 數值結果與討論... 52 第七章 結論...

57 參考文獻... 59 REFERENCES

[1] M. Nakagami, “The m-distribution, A General Formula of Intensity Distribution of Rapid,” in Statistical Methods in Radio Wave Propagation, W. G. Hoffman, Ed. Oxford, U.K.: Pergamon, 1960.

[2] P. Lombardo et al. “MRC Performance for Binary Signals in Nakagami Fading with General Branch Correlation”, IEEE Trans. on Commun., vol. 47, no.1, pp. 44-52, 1999.

[3] Zhengjiu Kang , Kung Yao, Flavio Lorenzelli “Nakagami-m Fading Modeling in the Frequency Doman for OFDM System Analysis” IEEE Transmission. On Commun., vol. 7, no. 10, Oct. 2003.

[4] Yunxia Chen, Chintha Tellambura , “Distribution Functions od Selection Combiner Output in Equally Correlated Rayleigh, Rician, and Nakagami-m Fading Channels”, IEEE Trans. on Commun., vol. 52, no. 11, Nov. 2004.

[5] N. C. Sagias, D. A. Zogas, G. K. Karagiannidis, and G. S. Tombras, “Performance Analysis of Switched Diversity Receivers in Weibull Fading,” Electron. Lett., vol. 39, no. 20 , pp. 1472-1474, Oct. 2003.

(2)

[6] M. Nakagami-m, “The m-distribution-A General Formula of Intensity Distribution of Rapid Fading in Statistical Methods in Radio Wave Propagation”, W. G.. Hoffman, Ed. Oxford, U.K.:Pergamon, 1960.

[7] H. Suzuki, “A Statistical Model for Urban Radio Propagation”, IEEE Transmission on Communication, vol. 25, no.7 pp. 673-680, July 1977.

[8] Matthias Patzold, “Mobile Fading Channel”, Wiley, pp. 3-7, 2002.

[9] S. Bernard, “Digital Communications Fundamentals and Applications”, pp. 962-966, Prentice Hall International Inc., 2001.

[10] T. S. Rappaport, “Wireless Communications Principles and Practice”, prentice Hall PTR, New Jersey, 1996.

[11] B. Sklar, “Rayleigh Fading Channels in Mobile Digital Communication Systems Part 1: Characterization”, IEEE Commun. Magazine, pp.

90-100, July 1997.

[12] Yacoub, M. D., “Foundations of Mobile Radio Engineering”, CRC Press Inc., 1993.

[13] T. M. Schmidl and D. C. Cox, “Robust Frequency and Timing Synchronization for OFDM,” IEEE Trans. on Commun., vol. 45, no. 12, pp. 1613-1621, Dec. 1997.

[14] Papoulis, Probability, Random Variables, and Stochastic Process, 3rd ed. New York: McGraw-Hill, 2001.

[15] Z. Wang and G. B. Giannakis, “A Simple and General Parameterization Quantifying Performance in Fading Channels,” IEEE Trans. on Commun., vol. 51, no. 8, pp. 1389-1398, Aug. 2003.

[16] Alouini, M.-S.; Abdi, A.; Kaveh, M., “Sum of Gamma Variates and Performance of Wireless Communication Systems over Nakagami-Fading Channels,” IEEE Trans. Veh. Technol., vol. 50, Issue 6, pp. 1471-1480, Nov. 2001.

[17] Sagias, N. C.; Karagiannidis, G. K., “Gaussian Class Multivariate Weibull Distributions: Theory and Applications in Fading Channels, ” IEEE Trans. on Information theory, vol. 51, Issue 10, pp. 3608-3619, Oct. 2005.

[18] S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 6th ed. Boca Raton, FL: Acdemic, 2000.

[19] W. C. Y. Lee, “Effect or Correlation between Two Mobile Ratio Base-station Antennas,” IEEE Trans. on Commun. Com.-21, pp.1214-1224, 1973.

[20] R. W. Chang, “Synthesis of Band-limited Orthogonal Signals for Multichannel Data Transmission”, BSTJ, vol. 46, pp. 1775-1796, Dec.

1966.

[21] Weinstein, S. B., and P. M. Ebert, “Data Transmission by Frequency Division Multiplexing Using the Discrete Fourier Transform,” IEEE Trans. Commun., vol. COM-19, pp. 628-634, Oct. 1971.

[22] Peterson. R. L., Ziemer, R. E., and Borth, D. E., “Introduction to Spread Spectrum Communications,” New York:McGraw-Hill, 1995.

[23] Brennan D. G., “Linear Diversity Combining Technique.” Proceeding of the IRE, vol. 47 , pp. 1075-1102, June 1959.

[24] Scaglione, S. Bardbarossa, and G. B. Giannakis, “Optimal Adaptive Precoding for Frequency-selective Nakagami-m Fading Channels”, in Proc. 52nd IEEE Vehicular Technology Conference, vol. 3, pp. 1291-1295, 2000.

[25] B. Sklar, Digital Communications-Fundamentals and Applications. Englewood Cligffs, NJ, USA: Prentice-Hall, 1988.

[26] L.J. Cimini, “Analysis and Simulation of a Digital Mobile Channel Using Orthogonal Frequency Division Multiplexing,” IEEE Transactions on Communications, vol. 33, pp. 665-675, July 1985.

[27] A. Peled and A. Ruiz, “Frequency Domain Data Transmission Using Reduced Computational Complexity Algorithms,” in Proceedings of Interational Conference on Acoustics, Speech, and Signal Processing, ICASSP’80, vol. 3, (Denver, CO, USA), pp. 964-967, 9-11 April 1980.

[28] B. R. Saltzberg, ”Performance of an Efficient Parallel Data Transmission System,” IEEE Transactions on Communication Technology, pp.

805-813, Dec. 1967.

[29] M. Alard and R. Lassalle, “Principles of Modulation and Channel Coding for Digital Broadcasting for Mobile receivers,” EBU Review, Technical, no. 224, pp. 47-69, Aug. 1987.

[30] I. Kalet, “The multitone channel,” IEEE Transactions on Communications, vol. 37, pp. 119-124, Feb. 1989.

[31] F. Mueller-Roemer, ”Directions in Audio Broadcasting,” Journal Audio Engineering society, vol. 41, pp. 158-173, March 1993.

[32] G. Plenge, “DAB-a new radio broadcasting system-state of development and ways for its introduction,” Rundfunktech. Mitt., vol. 35, no.

2, 1991.

參考文獻

相關文件

“Ad-Hoc On Demand Distance Vector Routing”, Proceedings of the IEEE Workshop on Mobile Computing Systems and Applications (WMCSA), pages 90-100, 1999.. “Ad-Hoc On Demand

For MIMO-OFDM systems, the objective of the existing power control strategies is maximization of the signal to interference and noise ratio (SINR) or minimization of the bit

In this thesis, we have proposed a new and simple feedforward sampling time offset (STO) estimation scheme for an OFDM-based IEEE 802.11a WLAN that uses an interpolator to recover

Choi, “A Hybrid Query Tree Protocol for Tag Collision Arbitration in RFID systems”, IEEE International Conference on Communications (ICC-07), pp.24–28, 2007. Cole, “THE

“IEEE P1451.2 D2.01 IEEE Draft Standard for A Smart Transducer Interface for Sensors and Actuators - Transducer to Microprocessor Communication Protocols

Selcuk Candan, ”GMP: Distributed Geographic Multicast Routing in Wireless Sensor Networks,” IEEE International Conference on Distributed Computing Systems,

Clay Collier, “In-Vehicle Route Guidance Systems Using Map-Matched Dead Reckoning", Position Location and Navigation Symposium, IEEE 1990, 'The 1990's - A Decade of Excellence in the

Alonso, “Electronic ballast for HID lamps with high frequency square waveform to avoid acoustic resonances,” 2001 IEEE Sixteenth Annual Conference Record of the Applied