• 沒有找到結果。

Uncover the mystery of strange metal state in

N/A
N/A
Protected

Academic year: 2022

Share "Uncover the mystery of strange metal state in "

Copied!
98
0
0

加載中.... (立即查看全文)

全文

(1)

Chung-Hou Chung 仲崇厚

Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan

NTU, Nov 3, 2020

Uncover the mystery of strange metal state in

correlated electron systems

(2)

In memory of Prof. Pauchy Huang (黃偉彥 教授)

I was Prof. Huang’s Master degree student during 1991-1993 in NTU.

(3)

• Strange metal phenomena in correlated electron systems

• Strange metal in heavy fermion metals/superconductors

Heavy-fermion metal: Ge-substituted YbRh2Si2

Heavy-fermion superconductors CeMIn5, M=Co, Rh, Ir Mechanism: Kondo vs. AF RKKY

• Paramagnetic heavy-fermion metal on frustrated lattice

• Summary

Outlines

(4)

Elementary excitations in fermionic solid state systems: quasiparticles

quasi-particles:

weakly interacting electron-hole pairs

T

Landou’s Fermi -liquid theory: normal metals

Enrico Fermi States of Fermi-liquid described by quasi-particle distributions

Normal states of most metals

Lev Landou

electrons dressed by density fluctuations

(5)

ρ(T)=ρ(0)+aT2

Electrical

resistivity:

T-linear specific heat T2 -resistivity

(6)

Strongly correlated electron systems

Transition metal compounds

(7)

x=0, Large Coulomb repulsion U--> Mott Insulators +Heisenberg anti-ferromagnet

x > xc, holes destroy AF order- normal Fermi liquid metal

Cu: d-orbitals

Strongly correlated quantum many-body systems

U

http://qcmd.mpsd.mpg.de/files/qcmd-theme/research/science/Mott/mott-diagr-for-web-2014-dbb-

https://www.psi.ch/swissfel/OrigInsTransEN/igp_1024x640%3E_V_11.png

YBa

2

Cu

3

O

7-x

High-Tc cuprate superconductors

= hole doping (x)

M. Ainslie, PhD Thesis, Cambridge U. , 2012

Competing ground state: AF vs. FL

(8)

https://upload.wikimedia.org/wikipedia/commons/thumb/0/05/Spinon_movin png/130px-Spinon_moving.png

Strange Metal Pseudo-gap

AF Normal Metal

(9)

AF insulator

Strange metal near edge of AF pseudogap and Fermi liquid phases

(10)

Quantum phase transitions

c

Τ

g g

True level crossing: Usually a first-order transition Avoided level crossing which becomes sharp in the infinite volume limit: Second-order transition

Critical point is a novel state of matter

• Critical excitations control dynamics in the wide quantum-critical region at non-zero temperatures

• Quantum critical region exhibits universal power-law behaviors: Non-Fermi liquid

Sachdev, quantum phase transitions, Cambridge Univ. press, 1999

Competing Quantum Ground States

Non-analyticity in ground state properties as a function of some control parameter g

kBΤ> |g-gc|νz Τ

QF~TF

QF >TF

TF: thermal fluctuations QF: quantum fluctuations

Phase I Phase II

QF >TF

δ = |g-g

c

|

kBΤ< |g-gc|νz kBΤ< |g-gc|νz

(11)

Universal quantum critical behaviours:

Fractal Cauliflower, self-similarity --- Quantum Criticality

Same correlations at ALL length scale ! Dynamical scaling form near QCP:

Sondhi et al, RMP 1997

<S(0) S(r)>~ G(r)~ exp(-r / )

(12)

Vojta, RPP, 2003

Quantum phase transition (QPT) & universal scaling

Hyperscalings: for d+z < 4

➼ Relations between various exponents.

Effective dimension :

d + z

Near QCP r

c

universal scaling

<S(0) S(r)>~ G(r)~ exp(-r / )

(13)

Strange Metal: linear-T resistivity

L. Taillefer, Ann Rev. 2010

(14)

Strange Metal: linear-T resistivity

L. Taillefer, Ann Rev. 2010

Generic, Ubiquitous across various correlated materials near phase transitions

(15)

Strange Metal: T-logarithmic specific heat coefficient Cv/T

L. Taillefer, Ann Rev. 2010

Signature of QCP?

(16)

L. Taillefer, Ann Rev. 2010

SM phase (new ground state) SM region (single QCP ) Debatable Open Question !

Strange Metal Behaviours near Quantum Phase Transitions and superconductivity:

High-Tc cuprate superconductors

Origin of Strange Metal ?

(17)

Strong correlations--Kondo Effect in metals with magnetic impurity

Anti-ferromagnetic spin-exchange between conduction electrons and local impurity spins

https://upload.wikimedia.org/wikipedia/commons/thumb/e/e2/Kscheme.jpg/320px-Kscheme.jpg

(18)

Kondo effect in metals with magnetic impurities

For T<Tk (Kondo Temperature), spin-flip scattering off impurities enhances Ground state is

Resistance increases as T is lowered

electron-impurity spin-flip scattering

logT

(Kondo, 1964)

(Glazman et al. Physics world 2001)

(19)

Antiferromagnetic RKKY coupling Kondo effect on a lattice: Kondo lattice

heavy fermi-liquid via Kondo effect J

P. Coleman, Magnetism and Advanced Magnetic Materials,95-148 (2007).

Matsuda, AAPPS Bulletin 2017

d-electron

dilute magnetic metal ions, the oscillatory RKKY  “spin glass”.

dense systems, the RKKY ordered antiferromagnetic state

(20)

Kondo Hybridization in heavy-fermion systems

Flat band:

local moment f-electrons

Dispersive band: conduction d-electrons

hybridized band

hybridized band

P. Coleman, Electrons at the edge of magnetism, Handbook of Magnetism and Advanced Magnetic Materials, Wiley, 2007

(21)

Strange Metal Behaviours near Quantum Phase Transitions and superconductivity:

Heavy-fermion metals/superconductors

http://inac.cea.fr/Images/astImg/522_1.png

Strange Metal

(22)

What are the key quantum critical fluctuations?

To address the strange metal physics, we must find out :

Bosonic Kondo (charge) fluctuations

Bosonic RVB sin liquid (made of fermionic spinons)

In heavy fermion systems, they are:

(23)

Chung-Hou Chung

Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan

Mechanism of strange metal state near a heavy-fermion quantum critical point

Collaborators:

Yung-Yeh Chang (NCTU, Taiwan)

Silke Paschen (TU Vienna, Austria)

PRB 97, 035156 (2018)

(24)

Strange Metal (SM) near a AF quantum critical point (QCP)

heavy fermion Kondo lattice systems YbRh2Si2

quantum critical non-Fermi-liquid

Anti-ferromagnetic Fermi liquid

Paramagnetic heavy Fermi liquid

SM

Yb: 4f, 5d Rh:4d

(25)

T-linear resistivity: YbRh2Si2

O. Trovarelli et al. PRL 2000

(26)

Specific heat coefficient: T-logarithmic YbRh2Si2

O. Trovarelli et al. PRL 2000

Log(T)

(27)

Divergence of A-coefficient and effective mass near QCP

O. Trovarelli et al. PRL 2000

A~(m*)

2

~1/|B-Bc|

A~ quasiparticle–quasiparticle scattering cross-section

(28)

RH: Hall coefficient~1/VFS

S. Paschen et al., Nature (2004)

Jump in Fermi surface volume at QCP for T0 for YRS

(29)

Phase diagram -

Ge-doped YbRh

2

Si

2

Field-tuned ➸

quantum critical point

Custers, Nature, 2003, Custers, PRL, 2010

S. Wirth, JPCM, 2012

Heavy fermions :

Yb: 4f, 5d Rh:4d

YRS Ge-YRS

TN ~18mK

B

c1

~0.3T

B

c2

~0.66T

(30)

Non-Fermi Liquid Strange Metal Behaviors: Ge-YRS

Power-law (T-𝛼𝛼) + ln (T0/T) — Specific heat coefficient

Linear-in-T Resistivity

Custers, et al., Nature, 2003 Custers, et al., PRL, 2010

breakup of quasi-particles spin (f)-charge (d) separation

T<0.3K T<10K

2D SDW

10mK<T<10K

T<0.3 K

(31)

P. Coleman’s talk in NCTU, 2016

(32)

Kondo breakdown and Quantum Criticality in Heavy-fermions

Doniach phase diagram

P. Coleman,

Magnetism and Advanced Magnetic Materials,

95-148 (2007).

QCP

(33)

Frustrated Kondo lattice

J. Custers et al. Phys. Rev. Lett. 104, 186402 (2010)

B-field

Ge doping induces disorder ~ frustration

(34)

New Kondo breakdown scenario

AF RKKY + disorder induced frustration:

Fractionized Fermi liquid (FL*) RVB spin-liquid metal

Kondo effect

Coleman et al., J Low Temp Phys 161, No1-2, 182-202 (2010)

P. Coleman,

Magnetism and Advanced Magnetic Materials, 95-148 (2007).

VS.

(35)

Phase diagram for Ge-YRS

(36)

Large-N (Sp(N))Mean-field Kondo-Heisenberg Model

(conduction electrons) (localized electrons)

➔ RVB spin-singlet bond (Characterize the spin-liquid)

➔ Kondo hybridisation (Characterize the Kondo phase)

(37)

Fractionalized

Fermi-liquid (FL*)

Kondo

Heavy Fermi Liquid

B field suppresses

superconducting phase

V.S.

Senthil, PRL, 2003

Custers, Nature, 2003 Custers, PRL, 2010

Proposed phase diagram

(38)

Effective Action—Mean-field

(39)

Effective action—amplitude (Gaussian) fluctuation

boson-fermion Yukawa coupling

new scaling!

Beyond Ginzburg-Landau theory of phase transitions

quasi-2d:

d=z+η, z=2, 0<η<<1

(40)

Crossover scales

☞ B suppresses J 𝛷𝛷 but keep J 𝜒𝜒 nearly at J 𝜒𝜒 *

T FL* : J

𝛷𝛷

> J

𝜒𝜒

*, J

𝜒𝜒

is marginal.

T LFL : J

𝛷𝛷

< J

𝜒𝜒

*, J

𝜒𝜒

is marginal, 𝜒𝜒 is relevant relative to marginal J

𝜒𝜒

T

*

: 𝜒𝜒 (J

K

)

is marginal but J

𝜒𝜒

is irrelevant.

(41)

Divergence of A-coefficient in FL phase

theory prediction:

O. Trovarelli et al. PRL 2000

(42)

Specific heat coefficient

fitting parameter:

Critical bosonic RVB fluctuations

(43)

Specific heat coefficient

Theory Experiment

T

LFL

~ | J

𝞥𝞥

-J

𝞥𝞥*

| ~ | B-B

c

|

anomalous exponent 2d bosonic fluctuations quantum critical

(44)

Linear-T Resistivity

Conduction electron T-matrix

Critical Kondo fluctuations (bosonic charge)

(45)

Linear-T Resistivity

𝜏𝜏(k) : life-time of c-electrons.

Conductivity

T-linear Resistivity:

Custers, et al., PRL, 2010

(46)

𝛼𝛼 : constant Friedeman et al., PNAS, 2010

T > 0 T = 0

Jump in Fermi surface volume

(47)

Strange superconductivity near heavy-fermion quantum critical point

:

application for CeMIn5 (M= Rh, Co)

PHYSICAL REVIEW B 99, 094513 (2019)

Chung-Hou Chung 仲崇厚

Department of Electrophysics,

National Chiao Tung University, Hsinchu, Taiwan

Collaborators:

Yung-Yeh Chang (NCTU), Feng Hsu (NTHU),

S. Kirchner (Zhejiang U., China), C. Y. Mou (NTHU) T. K. Lee (Academia Sinica)

Acknowledgement:

J. D. Thompson (LANL), Piers Coleman (Rutgers)

(48)

CeCoIn5: Lattice Structure

Tetragonal

Matsuda, AAPPS Bulletin 2017

Tetragonal

Discovered in 2001 by Fisk et al., heavy-fermion analogue of cuprate (LaCu2O4) superconductor

CeIn3

quasi-2D structure + proximity to magnetic order, favorable for unconventional superconductivity

Co2+ (3d7)

local-moment 4f electron on Ce + itinerant 5d (Ce) and 3d (Co) electrons

Kondo hybridization between f and d electrons, Anti-ferromagnetism (Ce)

Superconductivity at the boarder (quantum critical point QCP) of anti-ferromagnetism

CoIn2

(49)

strange superconductivity in CeCoIn5:

Non-Fermi liquid (strange metal) normal state

anomalous power-law magnetic susceptibility

Tc ~ 2.3K

// c

// ab

Curie-Weiss paramagnet

Magnetic susceptibility

C. Petrovic, JPCM. 13, L337-L342 (2001).

d

x2-y2

wave gap

(50)

Global Phase Diagrams of CeCoIn5

J.D. Thompson et al. Phys. Rev. Lett. 106, 087003 (2011)

quantum critical lin

SM

(51)

Phase diagram for CeRhIn5

Co-existing AFM+SC

First-order transition

2 peaks: Tc and T

N

J.D. Thompson et al. New Jouranl of Physics 11, 055062 (2009)

Spiral (incommensurate) spin order (SDW)

W. Bao, PRB 2000

P2: QCP in the absence of SC

SM

(52)

Kondo breakdown QCP for CeRhIn5

Small Fermi surface

Kondo destruction) Large Fermi surface

(Kondo)

T. Park, et al., Nature 440, 65 (2006).

Q. Si et al. Science 329, 1161 (2010)

S

F

cross-sectional area of Fermi surface

(53)

J. Thompson et al. arXiv:0910.2287

Sub-linear-T resistivity (non-Fermi liquid)

(54)

Open issues on mechanism of strange superconductivity in CeMIn5

• How do (f) electrons incorporate in the superconducting state?

• How does a strange metal turn into a superconductor?

• What are the links among SM, Kondo coherence,

superconductivity, and QCP?

(55)

Anderson’s RVB spin-liquid for cuprate supeconductors

Resonating Valence Bond (RVB) spin-liquid

Kondo stablized spin-liquid close to magnetic instability (phase transition)

Escape of RVB singlets into conduction sea

Bose condensing Cooper pairing-

superconductivity Andrei, Coleman JPCM 1989

inter-layer proximity

(56)

SM

SC

(57)

Large-N Mean-field phase diagram

RVB spin-liquid

LFL

CeCoIn5

Superconductivity = co-existence btw Kondo and RVB spin-liquid

Kondo + RVB

(58)

Strange metal (SM), superconductivity and quantum criticality

SM

SM

(59)

(B = magnetic field)

Kondo Heavy Fermi Liquid

Fractionalized

Fermi-liquid (FL*)

Coexisting superconducting

FL*

SM  QCP by Suppressing SC QCP

QCP

SM

(60)

Effective field theory beyond mean-field

Y. Chang et al PRB 2018

(61)

Effective action beyond mean-field —amplitude (Gaussian) fluctuation

Competition Kondo (S

k

) vs. RVB (S

J

)

(62)

+

Composite Cooper pairing:

via higher order collaborations btw Kondo and RVB

Cooper instability: RG analysis near g

c1

and g

c2

(63)

Near g

c2

: phase diagram of CeCoIn5 (Kondo dominated)

SC

QCP

RVB spin-liquid breakdown QCP

CeCoIn5

Strong Kondo, weak RKKY

linear crossover (via RVB breakdown under RG)

(64)

Near g

c1

: phase diagram of CeRhIn5 and CeCoIn5

(strong AF RKKY limit)

SC + Kondo breakdown

- SC+AF SC + Kondo

Kondo breakdown QCP (g)

CeRhIn5

Strong RKKY, weak Kondo

CeCoIn5

weaker RKKY

CeRhIn5

stronger RKKY

(65)

Outstanding puzzles:

 How do the f-electrons incorporate in the superconducting state? Kondo?

 How does superconductivity emerge from the strange-metallic (SM) normal state?

 What are the links among SM, Kondo coherence, superconductivity, and QCP?

strange superconductivity near heavy-fermion quantum critical point

CeCoIn5 CeRhIn5

QCP QCP

(66)

Chung-Hou Chung (仲崇厚)

Department of Electrophysics, NCTU, Hsinchu, Taiwan

Collaborators

Jiangfan Wang (NCTU, Taiwan & IoP, CAS, China ) Yung-Yeh Chang (NCTS & NCTU, Taiwan)

Strange metal state in paramagnetic Kondo lattice:

dynamical large-N Fermionic multichannel pseudo fermion

approach (arXiv: 2005.03427)

(67)

CePdAl under B, p

Paramagnetic heavy-fermion metal

Ce: 5d, 4f

Crystal structure: Kagome Kondo lattice

H. v. Lohneysen et al., PRB, 2014

Peijie Sun et al., PRB, 2018 Peijie Sun et al., Nature Phys., 2019

T-quasi-linear Resistivity

AF

FL

Strange metal phase: new!

1<m<2

paramagnetic spin-liquid

LFL

quantum critical strange metal phase

FS reconstruction /Kondo breakdown

AF AF LFL

(68)

Peijie Sun et al., Nature Phys, 2019

Non-Fermi liquid strange metal resistivity

B=0 under pressure

(69)

Kondo breakdown and Fermi surface crossover-line B*(T)

Peijie Sun et al., PRB, 2018

Sharp jump in Fermi surface volume at Kondo breakdown QCP

Q. Si et. al. Science, 329, 1161 (2010)

(70)

Pauli spin susceptibility T0

 Fermionic excitations

No pressure, paramagnetic fermionic metallic spin-liquid (state “P”)

Peijie Sun et al., PRB, 2018

𝜒𝜒ac increases upon cooling

and saturates at low temperature→

Spin liquid

(71)

Frustrated Kondo Lattice

J. Custers et al., PRL, 2010

B-field or doping

Peijie Sun et al., PRB, 2018

Peijie Sun et al., Nature, Phys.

2019

(72)

Frustrated Kondo Lattice

Quantum phase transition between

a paramagnetic spin-liquid NFL phase and a heavy FL phase

Peijie Sun et al., Nature, Phys.

2019

(73)

RG Phase diagram for Ge-YRS

YY Chang et al PRB 2018 gaped spin-liquid

(74)

Fermionic Multichannel dynamical large-N 2D Kondo-Heisenberg (KH) Lattice model

(conduction electrons) (localized electrons)

P. Coleman et al., PRL 2018

square lattice

(75)

Hubbard-Stratonovich transformation & order parameters

Mean-field order parameters

Fermionic RVB spin-singlet bond

Bosonic Kondo correlation

RVB: resonating valence bond

Bosonic fields

Sp(N) sym.

(76)

Dynamical large-N self consistent NCA equations

Saddle-point eqs.

F : free energy

Large-

N

limit:

local bath approximation ~DMFT

(77)

Quantum phase transition & critical spin liquid strange metal phase for 𝝹𝝹 = ½

(S=1/2 in Sp(2)=SU(2) limit)

𝜿𝜿 = 1/2

Particle-hole symmetry for 𝝹𝝹 = 1/2.

Region I.: Quantum critical strange metal phase:

Spinons and holons show critical (gapless) power-law spectral functions.

gQC becomes a QCP (continuous transition):

Region II. NFL SM becomes truly quantum critical region

Spectral weight

(78)

NFL properties of critical spin liquid

Power-law T-matrix

& scaling

Entropy &

specific heat coefficient

The critical spinon and holon give rise to NFL behavior

in various observables

C

V

/T -ln(T)

S T-T ln (T)

(79)

Peijie Sun et al., Nature, 2019

~T NFL SM resistivity

𝜿𝜿 = 1/2 𝜿𝜿 = 0.3

(80)

Summary

Strange metal state are generic non-Fermi liquid properties in correlated electron systems near quantum phase transitions

• Kondo in competition with RVB spin-liquid provides an excellent description on the mechanism of strange metal behaviors observed in quasi-2D heavy-fermion metals and superconductors

• Critical Kondo (bosonic charge) fluctuations lead to T-linear resistivity

• Critical bosonic RVB spin-liquid fluctuations (made of fermionic spinons) lead to T-logarithmic singularity in specific heat

coefficient

(81)

Joe Thompson, LANL

Acknowledgement

Frank Steglich, Max-Planck, Dresden

Experimentalists Theorists

Piers Coleman, Rutgers U.

Matthias Vojta, TU Dresden Stefan Kirchner

Zhejiang U.

Qimiao Si Rice U.

(82)
(83)

S. Sachdev’s Onsarger Prize Talk APS March Meeting 2018

(84)

Perturbative renormalization group (RG)

Feynman diagrams ➠ (one-loop)

⬅⬅ Bare Green functions

Wave-function + coupling constant renormalizations

(85)

Correlation length ξ:

Crossover scale T

LFL:

RG relative to fixed J

𝜒𝜒

quasi-2d: d=z+η, z=2, 0<η<<1

RG equations and RG flows

(86)

The Gaussian fluctuation of RVB singlets dominate the specific heat.

rescaling of T

(Hertz-Millis theory)

m

𝛷𝛷 is strongly relevant,

m

𝛷𝛷 ~

O

(1).

e

l ~ 𝜉𝜉 ➔

T

l =

T

l=0/

T

LFL

Millis, PRB, 1993

Specific heat coefficient

(87)

Anomalous Scaling in Free Energy and Hyperscaling Violation.

Conventional Hyperscaing

hyperscaling violation due to boson-fermion coupling:

The Gaussian fluctuation of RVB singlets dominate the Gaussian Free energy (spin)

(88)

Specific heat coefficient

fitting parameter:

(89)

Open issues

• Microscopic mechanism of SM (NFL) properties

Due to QCP? What are the competing states?

Nature of the transition?

• Role of magnetic field?

• How to explain exotic scaling behaviors in SM state?

(90)

Mean-field phases diagram

(B = magnetic field)

Fractionalized

Fermi-liquid (FL*)

Coexisting

superconducting

Kondo

Heavy Fermi Liquid

FL*

(91)

SM in Ge-YRS can be explained by a quantum critical region due to a single QCP at gc within Kondo breakdown scenario.

The magnetic field mainly suppresses the RVB term, while the Kondo term stays nearly critical. YRS has spatial dimension d = 2 + 𝜂𝜂, 𝜂𝜂  0.

Remarkable agreements between our theory and experiments on Ge-YRS.

The specific heat is dominated by the RVB (spinon) fluctuation

Kondo fluctuation contributes to the electrical (charge) transport.

Hyperscaling violation

Anomalous exponent in specific heat coefficient is explained

The dynamical ω/T scaling exists even for d+z > 4 due to the Kondo breakdown

Summary

(92)

Intertwine between dynamics and thermodynamics

Partition function (thermodynamics)

Imaginary-time Feynmann’s path integral (dynamics)

Imaginary-time

Sondhi et al, RMP 1997

g

Power-law divergent correlation lengths

g-gc t=

<S(0) S(r)>~ G(r)~ exp(-r / )

Τ

gc

QF~TF

(93)

https://upload.wikimedia.org/wikipedia/commons/thumb/0/05/Spinon_moving.

png/130px-Spinon_moving.png

(94)

NFL SM behaviors in other heavy-fermion compounds

H. v. Löhneysen, PRL, 1994 H. v. Löhneysen, JPCM, 1996

CeCu

6-x

Au

x

QPT by

doping

(95)

P. Coleman,

Magnetism and Advanced Magnetic Materials, 95-148 (2007).

(96)

CeCoIn5:

d-wave nodal superconducting quasi-particle scattering nodal gap

STM QPI

dx2-y2 wave gap

d

x2-y2

wave gap

Ali Yazdani et al. Nature Physics 9, 474–479 (2013

)

J.C. Davis et al., Nature Physics 9, 468-473 (2013)

(97)

Anderson’s RVB spin liquid

(98)

The Green function

𝜔𝜔/T scaling:

- scaling

usually exists at d+z < 4 G-L theory

Even for d+z > 4,

𝜔𝜔/T still exists due to boson-fermion interactions.

Vojta, RPP, 2003

參考文獻

相關文件

Articles of this Chapter, other than those of headings 96.01 to 96.06 or 96.15, remain classified in the Chapter whether or not composed wholly or partly of precious metal or metal

In the fourth quarter of 2002, the total import value of liquid and gas fuels reached the amount of 339 millions Patacas, representing an increase of 1.2% over the same period of

6 《中論·觀因緣品》,《佛藏要籍選刊》第 9 冊,上海古籍出版社 1994 年版,第 1

Mie–Gr¨uneisen equa- tion of state (1), we want to use an Eulerian formulation of the equations as in the form described in (2), and to employ a state-of-the-art shock capturing

• Non-vanishing Berry phase results from a non-analyticity in the electronic wave function as function of R.. • Non-vanishing Berry phase results from a non-analyticity in

• Understand Membrane Instantons from Matrix Model Terminology. Thank You For

In an Ising spin glass with a large number of spins the number of lowest-energy configurations (ground states) grows exponentially with increasing number of spins.. It is in

* Anomaly is intrinsically QUANTUM effect Chiral anomaly is a fundamental aspect of QFT with chiral fermions.