• 沒有找到結果。

ჴբΟǴQuadrature VCO Using Superharmonic Coupling (SiGe HBT

კ 4.41 ࢂҁԛჴբޑЬाႝၡࢎᄬǴх֖ٿঁЬाޑ೽ҽǺ(1) ৡ୏ᒡрᓸ௓ਁᕏᏔǹ(2) ጠӝᡂᓸᏔ(transformer)ႝၡǶ

(1)ճҔ΋ಔႝ඲ᡏǴஒځ௨ӈԋ Cross-couple ޑࠠԄǴջёаӧ ځᒡрᆄౢғ҅ӣ௤ǴӆճҔᒡрᆄޑ resonator ࿶җ፾྽ޑ೛ीځ Ӆਁᓎ౗Z 1 LCǴջёӧགྷाޑᓎ౗ౢғڬය܄ޑᒡрǶҁႝၡޑ Ѥঁ࣬ՏᒡрࣣԖᐱԾޑ LC-tankǴӧ cross-couple ၡ৩΢௦Ҕႝ৒բ ࣁӣ௤ϡҹǶԜਔѸ໪ගٮୃᓸႝࢬǴcross-couple ޑႝ඲ᡏωё҅

தπբǶԶ(2)ޑ೛ीБݤ൩ၟ 4.5 ࿯΋ኬǶ

კ 4.41 Superharmonic coupling QVCO ϐႝၡკ

Symmetric Transformer ϐ੝܄ኳᔕ

(1)ጠӝᡂᓸᏔϐኳᔕǺ

ճҔ EM ኳᔕ೬ᡏ(Momentum)՗ᆉᡂᓸᏔޑୖኧϷጠӝ߯ኧ:

ĺ K=-0.835 Transmission Coefficient= -4dB @10GHzǴጠӝ߯ኧࣁॄ

ॶࢂӢࣁךॺעٿЍጠӝޑႝࢬᒡΕᡂᓸᏔޑϸӛᆄǶԜѦǴ߈՟΋

ঁ฻ਏႝၡٰኳᔕ Time domain ΢ޑਏᔈǶ

m12freq=

real(K_sim1)=-0.83510.00GHz

2 4 6 8 10 12 14 16 18

freq, GHz

real(K_sim1)

m12

m14freq=

dB(S(6,7))=-4.84510.00GHz

2 4 6 8 10 12 14 16 18

freq, GHz

dB(S(6,7))

m14

R R6 R=9.237 Ohm R R7 R=7.754 Ohm

L L2 R=

L=1.618 nH L L3 R=

L=2.222 nH

Mutual C=12.305 fF

C C8 C=13.102 fF

C C7 C=0.762 fF C

C6 C=0.008 fF C C11 C=40.853 fF

C C10 C=42.227 fF

4.6.1 Ⴃीೕ਱ӈ߄

Item Spec Supply Voltage 3 V

Current of QVCO core 3.16 mA Current of Output buffer 11.5 mA Power Consumption of core ~ 9.48 mW

Tuning frequency range 5.006GHz~5.529GHz

KVCO 523MHz/V Output Power -1.328dBm @ 5.529GHz

-2.783dBm @ 5.006GHz Phase Noise -107dBc/Hz @ 1MHz offset

Die size 1355 um × 1182 um 4.6.2 ჴෳ่݀

(1) Output spectrum: 4.159GHz, -13.05dBm

(2) Phase noise: -116.2831dBc/Hz

(3) KVCO Ϸ Output power: 23.1MHz/V

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

4.02 4.04 4.06 4.08 4.10 4.12 4.14 4.16 4.18 4.20 4.22

-7.0 -6.5 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0

Output Power (dBm)

Frequency (GHz)

Vtune (V)

4.6.3 ่ፕᆶ૸ፕ

(1) Die Photo:

(2) Chip performance:

Item Measurement Supply Voltage 3 V

Current of QVCO core 3.2mA Current of Output buffer 33.94mA Power Consumption of core ~ 9.6mW

Tuning frequency range

VtuneǺ0~2.6 4.14 ~ 4.20GHz

KVCO 23.1MHz/V Phase Noise @1MHz offset -116.28dBc/Hz

FOM -178.80dBc/Hz Output Power ~-6dBm

Die size 1355 um Ø 1182 um ೭ԛΠጕ܌٬ҔޑႝၡࢎᄬǴࢂஒٿঁ࣬ӕ LC-tank VCO ճҔ Symmetricޑ transformer բ Superharmonic couplingǴаౢғ҅Ҭ࣬Տ ޑ LO ૻဦǶҗໆෳ่݀ᆶኳᔕ่݀բКၨǴӧਁᕏᓎ౗΢ୃ౽Αஒ

߈ 900MHzǴ೷ԋޑচӢёૈࢂኳᔕਔ٬Ҕޑϡҹ model ᆶჴሞ΢ޑ ॶԖрΕǶҗܭҁႝၡԖ٬Ҕډ PN-junction ޑ varactorǴЪԜԛΠጕ

߻ TSMC SiGe 0.35µm ޑ model ۘ҂ׯހǴӧኳᔕ model ᆶ Layout

΢٠҂᏾ӝǴӵ݀у΢ႝགޑᕴୃ౽ໆၲ 56%Ǵ൩཮ளډҁԛޑໆෳ

่݀Ƕҗ tuning range ؒၲډႣ՗ॶёа௢ϐǴᔈ၀ࢂ varactor ޑ model

΢วғୢᚒǶԜѦǴSymmetric ޑ transformer ٠҂Πၸ testkeyǴᗨฅ ӧኳᔕਔς࿶Ҕ EM ೬ᡏႣ՗ځ੝܄Ǵόၸჴሞ΢ޑਏ݀ᗋࢂளΠ testkey ٰ ᡍ ᛾ Ƕ ӧ Phase noise ΢ ޑ ੝ ܄ ൩ ӳ ࡐ ӭ Ǵ ၲ ډ -122dBc/Hz@1MHz offsetǶф౗੃઻Бय़ΨᆶႣය࣬߈Ƕ

4.7 ჴբ΋ǵΒǵΟϐКၨ

Coupling Method Top-Series Superharmonic Superharmonic Technology InGaP/GaAs

2͔m HBT

InGaP/GaAs 2͔m HBT

SiGe 0.35͔m BiCMOS HBT Output Frequency

range (GHz) 4.054 ~ 4.143 4.913 ~ 5.038 4.14 ~ 4.20 Power

Consumption (mW)

25.5 18.5 9.6

KVCO (MHz/V) 25.43 31.25 23.1

Output Power

(dBm) ~ 2 ~ -4 ~ -6

Phase noise

@1MHzOffset -120.02dBc/Hz -126.29dBc/Hz -116.28dBc/Hz

FOM (dBc/Hz) -178.21 -187.16 -178.80

߄ 4.1 ჴբ҅Ҭ࣬ՏਁᕏᏔϐКၨ

ಃϖക

่ፕ

ҁፕЎճҔ GCT 2.0 um InGaP/GaAs HBT Ϸ SiGe 0.35µm BiCMOS ϐ ᇙ ำ Ǵ ჴ ౜ Α Static ǵ Dynamic ǵ Superdynamic ǵ Injection-LockedǵRegenerative ฻ଯೲନᓎႝၡࢎᄬǴவໆෳளډޑ

ႝၡ੝܄ᆶ౛ፕ࣬үǺ(1)Dynamic ஒ regenerative part ޑႝࢬᡂλࡕ ዴჴК Static ޑനଯᏹբᓎ౗ଯΑ50%Ƕόၸҁ Dynamic ႝၡӧեᓎ ਔޑ୏ᄊጄൎၨৡǴёӧΠԛ٬Ҕਔஒ regenerative part ک read part ޑႝࢬКፓե΋٤Ƕҁჴբ٬Ҕ1Ǻ3Ǵࢂ MOS ᇙԋ΢ന٫ϯࡕޑК ٯǴՠࢂӧ InGaP ΢ᗋሡբ٤೚ፓ᏾Ƕ(2)Superdynamic ౛ፕ΢ᔈё ஒ Dynamic ޑᏹբᓎ౗ӆගϲǴόၸ HBT চҁޑૻဦਁ൯൩όӵ CMOS εǴЪၸεޑᒡΕૻဦ཮ᡣ HBT ޑႝ඲ᡏ saturateǴ܌аԜࢎ

ᄬؒԖ౛གྷޑໆෳ่݀Ƕ(3)Regenerative ନᓎႝၡޑനଯᏹբᓎ౗ዴ ჴࢂനଯၲډ27GHzǴஒ߈Βϩϐ΋ޑ fTǴ࣬ၨܭ Static ᆶ Dynamic ѝૈၲΟϩϐ΋ډѤϩϐ΋Ԗᡉ๱ޑගϲǶவໆෳ่݀Ψёᢀჸډ Regenerative ӧ ե ᓎ ޑ ᏹ բ ज़ ڋ Ǵ ሡ ा 7GHz а ΢ ω ૈ ၮ բ Ƕ (4)Injection-Locked ߾ࢂԖեф౗੃઻٠ၲډଯᓎᏹբޑ੝܄Ǵӧ 10GHzѰѓޑᏹբѝ໪21mWǴऊࢂ Static ޑ1/3ǵRegenerative ޑ1/2Ǵ όၸ locking range നଯѝԖ6%ޑ foscǴӵ݀ाቚу locking range ᔈ௦ Ҕ Q ॶၨեޑႝགǶ΢ॊޑӚႝၡࢎᄬ೿Ԗόӕޑᓬલᗺ(ᏹբᓎ౗

ጄൎǵф౗੃઻ǵനଯᏹբᓎ౗ǷǷǷ)Ǵஒٰӧ೛ी PLL ਔ൩ёа ٩Ᏽس಍ޑሡ؃Ǵᒧ᏷፾྽ޑࢎᄬٰ٬ҔǶ೛ीନᓎᏔਔाуε output bufferޑႝࢬǴ೭ࢂӢࣁ on-wafer ໆෳࢂҔ50ȍ س಍ǴࣁΑӧ spectrum analyizer΢࣮ډଯܭ noise flow ޑᒡрૻဦǴѸ໪Ҕଯႝࢬ ០୏50ȍ ٰౢғ୼εޑਁ൯ǴሺᏔωૈ᠐ډૻဦǶ

ӧ҅Ҭ࣬ՏޑਁᕏᏔჴբ΢ǴΨ٬Ҕ SiGe Ϸ GaAs ٿᇙำٰჴ բǶόӕޑጠӝࢎᄬ཮Ԗ Phase noise Ϸ Phase error ޑ trade-offǴჹᔈ

ډ Zero-IF ک Low-IF س಍ޑा؃చҹࡕǴёаᒧҔԖճܭس಍ޑႝ

ၡ೛ीБݤǶவ InGaP/GaAs ΢ჴբрޑ Top-Series ک Superharmonic couplingࢎᄬёаว౜ࡕޣޑ phase noise ੝܄ၨӳǴӢԜႝ඲ᡏ٬Ҕ ޑӭჲჹ phase noise ޑቹៜࡐεǶόၸ SiGe ΢ޑ Superharmonic couplingࢎᄬ phase noise όӵ GaAs ΢ޑ Top-SeriesǴЬӢᗋࢂ Si ޑ

୷݈όࢂӳޑ๊ጔᡏǴ೷ԋᚇૻ೸ၸ୷݈ቹៜ᏾ᡏႝၡޑ੝܄Ƕ࿶

ၸ FOM ޑКၨࡕǴSuperharmonic ޑ੝܄ӧόؼޑ୷݈΢ᗋࢂёᆶ Top-Series࣬ϰእǶӧໆෳਁᕏᏔਔǴDC supply Ѹ໪ߚத੮ཀǴDC όᛙۓჹਁᕏޑᓎ౗൩཮೷ԋᅆ୏Ǵໆෳ Phase noise ਔ൩คݤளډ ᛙۓޑ DataǶ

നࡕӧ SiGe ΢ჴբрཥࢎᄬޑ VCOǴճҔ Hartely ࢎᄬޑե Phase noise ᓬᗺу΢ cross-coupled ޑႝ඲ᡏჹౢғॄႝߔǴᡣ VCO όՠ৒ܰଆਁ٠ߥԖ࣬྽եޑ phase noiseǶᗨฅᗋ҂ᕇளໆෳ่݀Ǵ ӧኳᔕᆶ౛ፕ୷ᘵ΢೿ёЍ࡭ԜࢎᄬޑёՉ܄Ƕ

ୖԵЎ᝘!

[1] B. Razavi, “RF Microelectronics,” Upper Saddle River, NJ: Prentice Hall PTR, 1998, Chapter 5.6.

[2] B. Razavi, Design of Analog CMOS Integrated Circuit, Mc Graw Hill, 1996.

ಃΒക ჴբ΋Ǻ

[1] Ching-Yuan Yang, Guang-kaai Dehng and Shen-Iuan Liu, “High-speed divide-by-4/5 counter for a dual-modulus prescaler,” Electronics Letters, vol 33, Issue 20, 25 Sept. 1997, pp. 1691-1692.

[2] Behzad Razavi, “Design of Integrated Circuits for Optical Communications,”

2002.

[3] Herbert Knapp, Thomas F. Meister and others, “A Low Power 20 GHz SiGe Dual-modulus Prescaler,” IEEE MTT-S Digest, 2000, pp. 731-734.

[4] Herbert Knapp, Martin Wurzer, Josef Böck, Thomas F. Merster, Günter Ritzberger, Klaus Aufinger, “36 GHz Dual-Modulus Prescaler in SiGe Bipolar Technology,”

IEEE Radio Frequency Integrated Circuits Symposium, 2002, pp. 239-242.

[5] Sang-Woong Yoon, Eun-Chul Park, Chang-Ho Lee, Sanghoon Sim, Sang-Goog Lee, Euisik Yoon, Joy Laskar, and Songcheol Hong, “5~6GHz-Band GaAs MESFET-Based Cross-Coupled Differential Oscillator MMICs With Low Phase-Noise Performance,” IEEE Microwave and Wireless Components Letters, Vol.

11, No. 12, Dec. 2001.

[6] Markus Zannoth, Bernd Kolb, Joseph Fenk, and Robert Wergel, “A Fully Integrated VCO at 2 GHz,” IEEE J. of Solid-State Circuits, vol. 33, no. 12, Dec. 1998.

[7] Kerbert Knapp, Wilhelm Wilhelm, and Martin Wurzer, “A Low-Power 15-GHz Frequency Divider in a 0.8-µm Silicon Bipolar Technology,” IEEE Transcations on Microwave Theory and Techniques, vol. 48, no. 2, Feb. 2000, pp. 205-208.

ಃΒക ჴբΒǺ.

[1] Mehran Mokhtari, “100+ GHz Static Divide-by-2 Circuit in InP-DHBT Technology,” IEEE J. Solid-State Circuits, September 2003.

[2] M. Sokolich, C. H. Fields, S. Thomas III, B. Shi, K. Boegeman, M. Montes, R.

Martinez, A. R. Kramer, and M. Madhav, “A low-power 72.8-GHz static frequency divider in AlInAs-InGaAs HBT technology,” IEEE J. Solid-State Circuits, vol. 36, pp.

1328-1334, Spet. 2001.

ಃΒക ჴբΟǺ

[1] K. Murata, “20 Gbit/s GaAs MESFET Multiplexer IC Using A Novel T-Type Flip-Flop Circuit,” ELECTRONICS LETTERS, 22nd October 1992, Vol. 28, No. 22.

[2] Taiichi Otsuji, “A Super-Dynamic Flip-Flop Circuit for Broad-Band Applications up to 24 Gb/s Utilizing Production-Level 0.2um GaAs MESFET’s,” IEEE J.

Solid-State Circuits, vol. 32, no. 9, SEPTEMBER 1997.

[3] Zhihao Lao, “35-GHz Static and 48-GHz Dynamic Frequency Divider IC’s Using 0.2-um AlGaAs/GaAs-HEMT’s,” IEEE J. Solid-State Circuits, vol. 32, no. 10, OCTOBER 1997.

[4] Martin Wurzer, “71.8 GHz Static Frequency Divider in a SiGe Bipolar Technology,” IEEE ECTM 12.3.

[5] Hwan-Seok Yeo, “Comparative Study of Static and Dynamic D-type Flip-Flop Circuits using InP HBT’s,”

[6] Alfred Felder, “46 Gb/s DEMUX, 50 Gb/s MUX, and 30 GHz Static Frequency Divider in Silicon Bipolar Technology,” IEEE J. Solid-State Circuits, vol. 31, no. 4, APRIL 1996.

ಃΒക ჴբѤǺ

[1] Taiichi Otsuji, “A Super-Dynamic Flip-Flop for Board-Band Applications up to 24

Gb/s Utilizing Production-Level 0.2-µm GaAs MESFET’s,” IEEE J. Solid-State Circuits, vol. 32, no. 9, September 1997.

[2] K. Murata, M. Ohhata, M. Togashi, M.Suxuki, “20 Gb/s GaAs MESFET multiplexer IC using a novel T-type flip-flop circuit,” IEEE Electron Lett., vol. 28, pp.

2090-2091, 1992.

[3] T. Suzuki, H. Kano,“40-Gbit/s D-type Flip-Flop and Multiplexer Circuits Using InP HEMT,” 2001 IEEE Radio Frequency Integrated Circuits Symposium.

[4] Hwan-Seok and Jinwook Burm Ohhata, “Comparative Study of Static and Dynamic D-type Flip-Flop Circuits using InP HBT’s,” IEEE Electron. Lett., vol. 28, pp. 2090-2091, 1992.

ಃΒക ჴբϖǺ

[1]Hamid R. Rategh, “Superharmonic Injection-Locked Frequency Dividers,” IEEE J.

Solid-State Circuits, vol.34, no.6, June 1999.

[2] Hamid R. Rategh, “Superharmonic Injection Locked Oscillators as Low Power Frequency Dividers,” Symposium on VLSI Circuits Digest of Technical Papers.

[3] Hamid R. Rategh, “A 5GHz, 1mW CMOS Voltage Controlled Differential Injection Locked Frequency Divider,” IEEE 1999 CUSTOM INTEGRATED CIRCUITS CONFERENCE.

[4] Hamid R. Rategh, “A 5GHz, 32mW CMOS Frequency Synthesizer With an Injection Locked Frequency Divider,” 1999 Symposium on VLSI Circuits Digest of Technical Papers.

[5] Xiangdong Zhang, “A Study of Subharmonic Injection Locking for Local Oscillators,” IEEE MICROWAVE AND GUIDED WAVE LETTERS, vol.2, no.3, March 1992.

[6] A.S. Daryoush, “Theory of Subharmonic Synchronization of Nonlinear Oscillators,” 1989 IEEE MTT-S Digest.

[7] B.N. Biswas, “Harmonic Synchronization of Oscillators Revisited,” IEEE

[8] Vasil Uzunoglu, “The Synchronous Oscillator: A Synchronization and Tracking Network,” IEEE J. Solid-State Circuits, vol. SC-20, no. 6, Dec. 1985.

ಃΒക ჴբϤǵΎǺ

[1] R. H. Derksen, “Monolithic Integration of A 5.3GHz Regenerative Frequency Divider Using A Standard Bipolar Technology,” ELECTRONICS LETTERS, 24th October 1985, vol. 21, no. 22.

[2] Chris D. Holdenried, “Modified CMOS Chery-Hooper Amplifiers with Source Follower Feedback in 0.35um Technology,” 2003 IEEE.

[3] Harukiko Ichino, “18-GHz 1/8 Dynamic Frequency Divider Using Si Bipolar Technologies,” IEEE J. Solid-State Circuits, vol. 24, no. 6, Dec. 1989.

[4] R. B. Nubling, “25GHz HBT Frequency Dividers,” 1989 IEEE, GaAs IC Symposium-125.

[5] Masakasu Kurisu, “A Si Bipolar 21-GHz/320-mW Static Frequency Divider,”

IEEE J. Solid-State Circuits, vol. 26, no. 11, Nov. 1991.

[6] Masakasu Kurisu, “A Si Bipolar 28GHz Dynamic Frequency Divider.” IEEE J.

Solid-State Circuits, vol. 27, no. 12, Dec. 1992.

[7] Herbert Knapp, “86GHz Static and 110GHz Dynamic Frequency Dividers in SiGe Bipolar Technology,” IEEE MTT-S Digest.

[8] A. Rylyakov, “100GHz Dynamic Frequency Divider in SiGe Bipolar Technology,”

ELECTRONICS LETTERS, 23rd January 20035, vol. 39, no. 2.

ಃΟക ჴբ΋ǵΒǺ

[1] Roberto Aparicio, Ali Hajimiri “A CMOS Differential Noise-Shifting Colpitts VCO,” ISSCC 2002, Session 17, Advance RF Techniques, 17.2.

[2] Thomas H. Lee, Ali Hajimiri “Oscillator Phase Noise : A Tutorial,” IEEE J. of Solid-State Circuits, vol.35, March 2000.

[3] KaChun Kwok, “Ultra-Low-Voltage High-Performance CMOS VCOs Using Transformer Feedback,” IEEE J. of Solid-State Circuits, vol.40, no.3, March 2005.

[4] John R. Long “Monolithic Transformers for Silicon RF IC Design,” IEEE J. of Solid-State Circuits, vol.35, no.9, Sept. 2000.

ಃѤക ჴբ΋Ǻ

[1] J. P. Maligeorgos and J. R. Long, “A low-voltage 5.1-5.8-GHz image-reject receiver with wide dynamic range,” IEEE J. of Solid-State Circuits, vol.35, pp.

1917-1926, Dec. 2000.

[2] J. Crols and M. S. J. Steyaert, “A single-chip 900 MHz CMOS receiver front-end with a high performance low-IF topology,” IEEE J. of Solid-State Circuits, vol. 30, pp.

1483-1492, Dec. 1995.

[3] B. Razavi, “A study of phase noise in CMOS oscillators,” IEEE J. of Solid-State Circuits, vol.31, pp.331-343, March 1996.

[4] A. Rofougaran J. Rael, M. Rofougaran, and A. Abidi, “A 900MHz CMOS LC-oscillator with quadrature outputs,” in Proc. ISSCC 1996, Feb. 1996, pp. 392-393.

[5] P. van de Ven, J. van der Tang, D. Kasperkovitz, and A. van Roermund, “An optimally coupled 5 GHz quadrature LC oscillator,” in Proc. 2001 Symp. VLSI Circuits, June 2001, pp. 115-118.

[6] Pietro Andreani, “Analysis and design of a 1.8-GHz CMOS LC quadrature VCO,”

IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1737-1747, Dec. 2002.

[7] P. Andreani, “A low-phase-noise, low-phase-error 1.8 GHz quadrature CMOS!

VCO,” in Proc. ISSCC 2002, Feb. 2002, pp. 290-291.

ಃѤക ჴբΒǵΟǺ

[1] Hamid R. Rategh, “Superharmonic Injection-Locked Frequency Dividers,” IEEE J.

Solid-State Circuits, vol. 34, no. 6, June 1999.

[2] Lynch, J.J.; York, R.A. “Synchronization of oscillators coupled through narrow-band networks,” Microwave Theory and Techniques, IEEE Transactions on,

[3] E.Hegazi, H.Sjoland, and A.A.Abidi, “A filtering technique to lower LC oscillator phase noise,” IEEE J. Solid-State Circuits, vol. 36, pp. 1921-1920, Dec. 2001.

[4] Sander L.J., “A Low-phase-noise 5-GHz CMOS Quadrature VCO Using Superharmonic Coupling, ” IEEE J. Solid-State Circuits, vol. 38, no.7, July 2003.

[5] Jose Cabanillas, “A 900MHz Low Phase Noise CMOS Quadrature Oscillator,”

2002 IEEE Radio Frequency Integrated Circuits Symposium.

[6] Mina Danesh, “Differentially Driven Symmetric Microstrip Inductors,” IEEE Transactions on microwave theory and techniques, vol. 50, no. 1, January 2002.

[7] Harald Jacobsson, “Very Low Phase-Noise Fully-Integrated Coupled VCOs,”

2002 IEEE MTT-S Digest.