• 沒有找到結果。

第四章 數值研究

4.2 敏感度分析

4.2.4 ρ 對虛擬電子通路模型之影響

表4-6 將參數ρ設定為0.1 至 0.2,探討ρ的變動對營收分享比例

( )

r

產品零售價

( )

p 、銷售數量

( )

q 、零售商利潤

(

EMdR

)

、製造商利潤

(

dMEM

)

和 總通路利潤

( )

Π 的影響程度。結果顯示營收分享比例

( )

r 會隨著ρ的增加 而微幅減少,零售價

( )

p 則會因為成本項ρ的增加而提高,呈現正向關係,

故生產數量

( )

q 與ρ呈反向關係。零售商利潤函數

(

dREM

)

雖不含參數ρ,但 會因為營收分享比例

αρ α

αρ α α

b cz bcz

bcz cz

r cz+ − −

− +

= −

2

,中含有參數ρ,且零售商 利潤模型為∏dREM =−αcq +rpE

[

min

{

q,D

} ]

,因而會產生變動,因此當ρ增 加,則會使零售商利潤

(

EMdR

)

呈現遞減的情形。製造商利潤函數帶有參數 ρ,使製造商利潤

(

EMdM

)

與ρ 呈反向關係。總通路利潤函數

( )

Π 因為零 售商利潤

(

EMdR

)

與製造商利潤

(

EMdM

)

皆減少的情況下,也呈現遞減。

表4-6 電子平台擁有者向製造商收取平台使用費比率

( )

ρ 之敏感度分析

=

a 1000 b=3 c=5 α =0.45 B=950 f =0 電子平台擁

有者向製造 商收取平台 使用費比率

( )

ρ

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

營收分享比

( )

r 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 零售價

( )

p 13.79 13.89 14.00 14.10 14.21 14.31 14.41 14.52 14.62 14.73 14.8 生產數量

( )

q 181.01 176.97 173.04 169.23 165.53 161.94 158.45 155.06 151.77 148.57 145.46 零售商利潤

(

EMdR

)

657.49 650.67 643.93 637.28 630.71 624.23 617.83 611.51 605.27 599.11 593.04 製造商利潤

(

EMdM

)

269.26 265.23 261.29 257.44 253.68 250.00 246.39 242.87 239.42 236.04 232.73 總通路利潤

( )

Π 926.75 915.90 905.23 894.73 884.40 874.23 864.22 854.38 844.69 835.16 825.77

零售商利潤 製造商利潤 總通路利潤 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22

平台使用費(ρ)

200 300 400 500 600 700 800 900 1000

利潤

圖4-5 電子平台擁有者向製造商收取平台使用費比率

( )

ρ 之敏感度分析

4.2.5 及

b α

對利潤之敏感度分析

圖 4-6 顯示價格彈性係數

( )

b 對利潤之敏感度,電子市場之通路利潤

( )

Π 、製造商利潤

(

EMdM

)

及零售商利潤

(

EMdR

)

都明顯高於傳統市場,故分散 式虛擬電子市場經過營收分享之協調,利潤改善的程度較實體傳統市場 佳。圖4-7 則為零售商承擔之通路成本比例

( )

α 對利潤之敏感度,虛擬電子 市場之製造商利潤在α <0.65時的利潤是明顯高於實體傳統市場之製造 商,但一旦超過0.65 虛擬電子市場之製造商利潤則少於實體傳統市場之製 造商利潤,這是因為虛擬電子市場之製造商利潤模型中有一項支付給電子 平台提供者之費用

(

ρ×α×c×z

)

,而實體傳統市場則沒有此項成本,且α 持 續的增加又會使製造商分得的營收分享比例

(

1r

)

減少,終於使得虛擬電子

市場之製造商利潤與實體傳統市場之製造商利潤在α →0.65相交,所以建 議要在虛擬電子市場交易之製造商承擔的通路成本

(

1−α

)

要大於 0.35,至 於虛擬電子市場之總通路利潤在 0.65 後下降,零售商在 0.75 後下降也是 受到上述的影響。

虛擬電子市場之總通路利潤 虛擬電子市場之製造商利潤 虛擬電子市場之零售商利潤 實體傳統市場之總通路利潤 實體傳統市場之製造商利潤 實體傳統市場之零售商利潤 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0 10000 20000 30000 40000 50000 60000

利潤

b

圖4-6 價格彈性係數

( )

b 對利潤之敏感度分析

虛擬電子市場之總通路利潤 虛擬電子市場之製造商利潤 虛擬電子市場之零售商利潤 實體傳統市場之總通路利潤 實體傳統市場之製造商利潤 實體傳統市場之零售商利潤

0.0 0.2 0.4 0.6 0.8 1.0

α 0

200 400 600 800 1000

利潤

圖4-7 零售商承擔之通路成本比例

( )

α 對利潤之敏感度分析

4.2.6

f

對利潤之敏感度分析

由圖 4-8 可知實體傳統市場之製造商支付上架費給實體傳統市場之零售 商,上架費的增加會導致實體傳統市場之製造商利潤減少及實體傳統市場 之零售商利潤增加,在一方增加及一方減少的情況下,實體傳統市場之總 通路利潤是維持不變的。

製造商利潤 零售商利潤 總通路利潤

0 20 40 60 80 100 120 140 160 180

f 0

100 200 300 400 500 600 700 800

利潤

圖4-8 上架費

( )

f 對利潤之敏感度分析

m

第五章 結論與未來研究方向

傳統經濟學理論假設市場的資訊對稱,也就是買方及賣方假設擁有相 同的資訊量,交易可被視為沒有成本,但事實上,市場通常是無效率的,

為了交易,顧客必須進行資訊搜尋、協商和監視正在進行的活動,以確保 交易能合意(Coase, 1937)。本研究為了更接近現實社會情況,在實體傳統 市場的通路利潤模型中加入了製造商及零售商的交易成本 、A ;Phillips and Meeker (2000) 發現電子平台提供者的主要營收來自於交易為主的佣 金費(transaction-based commission fees),供應商及零售商需要支付電子市 場提供者交易費用,例如:會員費用或入會費,因此本研究在B2B 之虛擬 電子市場也為了貼近事實情形,加入了交易平台使用費

Ar

( )

ρ 。

本文從通路的整體利潤最大化切入,發展通路伙伴的協商策略,以 Wang et al. (2004)提出之等價格彈性與乘法需求模型為基礎,發展出實體 傳統市場及虛擬電子市場之分散式通路,並加入ArAm及ρ等參數,為了 要使二種通路模型達到通路整體利潤最大,使用營收分享協調二種通路。

本論文的研究包括以下研究結論:

1. 虛擬電子市場通路透過營收分享協調所得到的績效比實體傳統市場 好,建議通路轉往虛擬電子市場交易。

2. 價格彈性係數增加,則虛擬電子市場及實體傳統市場之通路績效下降;

零售商承擔的通路成本增加,則實體傳統市場之通路績效上升,但虛擬 電子市場之通路績效卻不會一直呈現上升。

3. 採用價格彈性與乘法需求模型求得出的零售商為了要讓製造商願意留 在虛擬電子市交易,零售商會對製造商進行補貼,但補貼範圍僅至零售 商於虛擬電子市場之利潤大於等於零售商於實體傳統市場之利潤為止。

4. 實體傳統市場之通路利潤若要與虛擬電子市場之通路利潤相當,則實體 傳統市場之交易成本必須很小才有可能達到。

本研究為兩階層通路結構,即單一零售商與單一製造商,時間為單一 週期之通路模型,且本模型僅使用營收分享機制協調通路,未來可針對其 他協調機制進行研究。建議未來研究方向:

1. 本研究探討買方為中心之虛擬電子市場通路,未來可對以賣方為中心或 是中立之電子市場進行研究。

2. 延伸模型加入時間考量,探討多期和動態訂價。

3. 延伸模型之情境,令零售商面對多個供應商。

參考文獻

王存國,戴基峰,王凱(2004),影響消費者接受線上購物傾向之探討-結 合慎思行動理論以及交易成本理論,資訊管理學報,第十一卷,第一期,

pp.113-137

莊世杰,賴志松,孫衙聰,龔昶元,葉穎蓉,許秉瑜(2005),一個 ERP 系 統之建構決定因素的理論探索:整合制度理論、資源依賴理論、資源基礎理 論及交易成本理論之理論模型,資訊管理學報,第十二卷,第一期,

pp.149-170

吳志明,朱素玥,方文昌(2006),供應鍊關係中信任與承諾影響因素之研 究-交易成本及社會交換理論觀點,資訊管理學報,第 13 卷專刊期,

pp.91-118

高佩如 (2008),營收分享與廣告行銷因子於供應鏈協調機制之研究,國立 屏東商業技術學院行銷與流通管理所

Aron, R., Ungar, L., Valluri, A., 2008. A model of market power and efficiency in private electronic exchanges, European Journal of Operational Research, 187, 922-942.

Bailey, J., Bakos, Y., 1997. An Exploratory Study of the Emerging Role of Electronic Intermediaries, International Journal of Electronic Commerce, 1 (3), 7−20.

Bakos, Y., 1991. A Strategic Analysis of Electronic Marketplaces, MIS Quarterly, 15(3), 295−310.

Bakos, Y., 1997. Reducing Buyer Search Costs: Implications for Electronic Marketplaces, Management Science, 43(12), 1676−1691.

Bloom, P. N., G. T. Gundlach and J.P. Cannon., 2000. Slotting allowances and fees:

schools of thought and the views of practicing managers, Journal of Marketing, 64, 92-108.

Bolen, W. H., 1978. Contemporary Retailing, Prentice-Hall, Englewood Cliffs, NJ.

Brandtweiner, R., and Scharl, A., 1999. An Institutional Approach to Modeling the Structure and Functionality of Brokered Electronic Markets, International Journal of Electronic Commerce, 3(3), 71−88.

Chen, J.M., Cheng, H.L., Chien, M.C., 2008. Profit-maximization models for a manufacturer-retailer channel under consignment and revenue sharing contract, Journal of the Chinese institute of Industrial Engineers, 25(5), 413-422.

Chen, L.H., Chen, Y.C., 2008. A newsboy problem with a simple reservation arrangement, Computers & Industrial Engineering.

Chen, M.S., Chang, H.J., Huang, C.W., Liao., C.N., 2006. Channel coordination and transaction cost: A game-theoretic analysis, Industrial Marketing Management, 35, 178-190.

Chircu, A.M., Mahajan, V. 2006. Managing electronic commerce retail transaction costs for customer value, Decision Support Systems, 42, 898-914.

Chu, W., 1992. Demand signaling and screening in channels of distribution.

Marketing Science, 11(4), 327–347.

Coase, R.H., 1937. The Nature of the Firm, Economics (4), 386-405.

Davis, S., Hagerty, M., and Gerstner, E., 1998. Return policies and the optimal level of Hassle, Journal of Economics and Business, 50(5), 445-460.

Eduardo, R. O., Andres, R. P., 2004. The regional return of public investment policies

in Mexico, World Development, 32(9), 1545-1562.

Emmons, H., Gilbert, S.M., 1998. Note. The role of returns policies in pricing and inventory decisions for catalogue goods, Management Sciences, 44 (2), 276-283.

Gallego, G., Moon, I., 1993. The distribution free newsboy problem: review and extensions, J Opl Res Soc, 44, 825-834.

Cachon, G.P., 2001. Stock wars: Inventory competition in a two echelon supply chain, Operations Research, 49 (5), 658–674.

Gerard, P., Cachon, G.P., and Lariviere, M.A., 2005. Supply Chain Coordination with Revenue-Sharing Contracts: Strengths and Limitations, Management Science, 51(1), 30-44.

Hagel, J., Singer, M., 1999. Net Worth: Shaping Markets When Customers Make the Rules, Harvard Business School Press, Boston.

Hodge, B.J., Anthony, W.P., Gales, L., 1996. Organization Theory, Perntice-Hall, Upper Saddle River.

Hoffman, W., Keedy, J., Roberts, K., 2002. The unexpected return of B2B, The McKinsey Quarterly, (3), 97-105.

Huefner, R.J., Largay III, J.A., 2008. The role of accounting information in revenue management, Business Horizons, 51, 245-255.

Kelly, K., 1991. The antitrust analysis of grocery slotting allowances: the procompetitive case, Journal of Public Policy & Marketing, 10, 187-198.

Khouja, M., 1999. The single-period (news-vendor) problem: literature review and suggestions for future research, Omega—International Journal of Management

Science, 27, 537-553.

Lariviere, M. A., Padmanabhan, V., 1997. Slotting Allowances and New Product Introductions, Marketing Science, 16(2), 112–128.

Lee, H.L., Nahmias, S., 1993. Single-product, single-location models, In: Graves, S.C., Kan, A.H.G.R., Zipkin, P.H. (Eds.), Handbook in Operations Research and Management Science, Volume on Logistics of Production and Inventory.

North-Holland, Amsterdam, 3-58.

Leebaert, D., 1998. The Future of the Electronic Marketplace, The MIT Press, Cambridge, MA.

Li, J., Liu, L., 2008. Supply chain coordination with manufacturer’s limited reserve capacity: An extended newsboy problem, International Journal Production Economics, 112, 860-868.

Linh, C.T., Hong, Y., 2008. Channel coordination through a revenue sharing contract in a two-period newsboy problem, European Journal of Operational Research.

Liang, T.P., Huang, J.S. 1998. An empirical study on consumer acceptance of products in electronic markets: a transaction cost model, Decision Support Systems, 24, 29-43.

Liu, C., Sia, C.L., Wei, K.K., 2008. Adopting organizational virtualization in B2B firms: An empirical study in Singapore, Information & Management, 45, 429-437.

Longo, T., 1995. At stores, many unhappy returns. Kiplinger’s Personal Finance Magazine, 49(6), 103.

Lucking-Reiley, D., Spulber, D. F., 2001. Business-to-Business Electronic Commerce, Journal of Economic Perspectives, 15(1), 55−68.

Malone, T.W., Crowston, K., 1994. The interdisciplinary study of coordination, ACM

Computing Surveys, 26, 87–119.

Malone, T. W., Yates, J., Benjamin, R. I., 1987. Electronic markets and electronic hierarchies, Communications of the ACM, 30(6), 484−497.

Marcus, B., Anderson, C.K., 2008, Revenue management for low-cost providers, European Journal of Operational Research, 188, 258-272.

McGill, J., van Ryzin, G., 1999. Revenue management: Research overview and prospects, Transportation Science ,33 (2), 233-256.

Modarres, M., Sharifyazdi, M., 2009. Revenue management approach to stochastic capacity allocation problem, European Journal of Operational Research, 192, 442-459.

Mortimer, J. H., 2000. The effects of revenue-sharing contracts on welfare in vertically separated markets: Evidence from the video rental industry. Working paper, University of California at Los Angeles, Los Angeles, CA.

Padmanabhan, V., Png, I. P. L., 1997. Manufacturer’s returns policies and retail competition. Marketing Science, 16(1), 81-94.

Pasternack, B.A., 1985. Optimal pricing and return policies for perishable commodities, Marketing Science, 4 (2), 166-176.

Phillips, C., Meeker, M., 2000. The B2B Internet Report-Collaborative Commerce.

Morgan Stanley Dean Witter, New York.

Porteus, E.L., 1990. Stochastic inventory model. In: Graves, S.C., Kan, A.H.G.R., Zipkin, P.H. (Eds.), Handbook in Operations Research and Management Science, Volume on Stochastic Models. North-Holland, Amsterdam, 605–652.

Rao, A. R., H. Mahi., 2003. The price of launching a new product: empirical evidence

on factors affecting the relative magnitude of slotting allowances, Marketing Science, 22, 246-268.

Rindfleisch, A., Heide, J.B., 1997. Transaction cost analysis: Past, Present, and Future Applications, Journal of Marketing, 61(4), 30-54.

Shaffer, G., 1991. Slotting Allowances and Resale Price Maintenance: A Comparison of Facilitating Practices, RAND Journal of Economics, 22(1), 120–135.

Siguawa, A., Kimes S.E., and Gassenheimer J.B., 2003. B2B sales force productivity:

applications of revenue management strategies to sales management, Industrial Marketing Management, 32, 539-551.

Silver, E.A., Pyke, D.F., Peterson, R.P., 1998. Inventory Management and Production Planning and Scheduling. Wiley, New York.

Simon, H.A., 1957. Models of Man, John Wiley & Sons, New York.

Sullivan, M. W., 1997. Slotting allowances and the market for new products, Journal of Law and Economics, 40, 461-493.

Wang, C.X., Benaroch, M., 2004. Supply chain coordination in buyer centric B2B electronic markets, International Journal of Production Economics, 92, 113-124.

Wang, X., Meng, Q., 2008. Continuous-time dynamic network yield management with demand driven dispatch in the airline industry, Transportation Research Part E, 44, 1052–1073.

Wang, Y., Jiang L., Shen Z., 2004. Channel performance under consignment contract with revenue sharing, Management Scinece, 50(1), 34-47.

Warren, A., Peers, M., 2002. Video retailers have day in court—Plaintiffs say supply deals between Blockbuster Inc. and studios violate laws, Wall Street Journal (June 13) B10.

Weatherford, L.R., Pfeifer, P.E., 1994. The economic value of using advance booking of orders, Omega, 22, 105-111.

Williamson, O.E., 1975. Markets and Hierarchies: Analysis and Antitrust Implications, Free Press, New York.

Williamson, O.E., 1979. Transaction-cost economics: the governance of contractual relations, Journal of Law and Economics, 22 (2), 233-261.

Yao, Z., Leung, S.C.H., and Lai, K.K., 2008. Manufacturer’s revenue-sharing contract and retail competition, Europe Journal of the Operational Research, 186, 637-651.

Yao, Z., Leung, S.C.H., Lai, K.K., 2008. Analysis of the impact of price-sensitivity factors on the returns policy in coordinating supply chain, European Journal of Operational Research, 187, 275-282.

Yu, C.C., Wang, C.S., 2008. A hybrid mining approach for optimizing returns policies in e-retailing, Expert Systems with Applications, 35, 157-158.

( )

附錄

本研究各種通路模型之最佳化證明採用Hessian Matrix 作驗證,在 Hessian Matrix 之條件限制下,能獲得通路模型通之最佳化。

附錄 A

「集中式通路」Hessian Matrix 之最佳化證明。

對第(2)式集中式利潤函數做價格 之一階微分,得到(A.1)式: p

( ) ( )

已 知 22 = 2

[ (

1

) ( )

Λ +

( (

+1

) (

+ 1

) ) ]

<0

( )( ) ( )

( )

( ) ( ) [ ( ) ]

證明1:

但小於 2

「虛擬電子市場分散式已協調通路」Hessian Matrix 之最佳化證明。

對第(20)式虛擬電子市場製造商利潤函數做價格 之一階微分,得到(C.1)

(20)式庫存因子 做一階微分,得到(C.3)式: z

[

相關文件