• 沒有找到結果。

本實驗以

HJJ-2 為材料製成元件以進行光物理及載子傳輸特性研究,

近一步了解其材料性質,較適合製作成哪一種OLED 材料,例如主體材料、

emitter 或 TADF。

5-1 材料物理性質

製成薄膜後放光有小幅度紅位移,應是分子堆疊(J-aggregation)使得 分子位能降低,因而放出的光能量較低,波長較長。

表 5-1 HJJ-2 的吸收波長的溶液態實驗值和薄膜態實驗值比較

薄膜態的放光量子效率(PLQY)遠比在溶劑中的高,應該是堆疊誘 導強化發光(Aggregation-Induced Emission Enhancement,AIEE)效應的

關係

40a-c

,可能分子在固態時容易產生有序的排列,特別是 PCP 間的 π‒π

作用力,使得分子內之振動、轉動不易發生。

表 5-2 HJJ-2 在溶液態和薄膜態的 E

g

PLQY 值

λ em

(nm) Stokes Shift (cm

-1

)

In THF Film In THF Film

HJJ-2

427 440 9154 3939

E g

PLQY

HJJ-2

In THF Film In THF Film

3.25 eV 2.81 eV 34% 82%

73

在低溫下(77 K)測得磷光波長為 575 nm,計算得 triplet energy 為 2.15 eV,因而ΔE

ST

≧ 0.2 eV;另外利用暫態光譜進行 lifetime 的量測,只觀 測到一個lifetime 為 2.97 ns 的 decay 曲線,而非 TADF 兩段斜率的曲線圖

15, 16, 25

。綜合以上量測結果判斷

HJJ-2 無法成為 TADF 材料。

350 400 450 500 550 600 650 700 0.0

Smooth delay 0.1 s(20pt) LTPL(delay 5 s) Smooth delay 5 s(20pt)

圖 5-1 HJJ-2 的低溫放光圖譜

接下來測量

HJJ-2 的載子傳輸能力 39b

,利用TOF transient photocurrent 方法量測

41

,進行測試的元件結構為Ag (30 nm)/HJJ-2 (1.5μm)/Ag (150 nm),

量測出的光電流與電場強度關係圖示於圖 5-3,顯示電洞傳輸行為屬非分 散性,而電子傳輸行為屬分散性。經由 Poole-Frenkel 圖以及μ ∝ exp(β

E

1/2

)公式

42a-c

獲致的電洞傳輸速率為1.15 × 10

-6

cm

2

/Vs,遠低於常用的電

洞傳輸材料NPB (N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)benzidine,μ =

74

transport properties non-dispersive dispersive

0 6 12

650 700 750 800 850 900 950 10-5

75

ITO / HJJ-2 (70 nm) / LiF (0.5 nm) / Al (110 nm) 和有加入電洞傳輸層 HATCN (hexaazatriphenylenehexacarbonitrile) 的 ITO / HATCN (5 nm) /

HJJ-2 (70 nm) / LiF (0.5 nm) / Al (110 nm) 。加入作為電洞注入層的

另外加入不同的電子傳輸層做比較,分別是 TmPyPB (tri(m-pyridin-3- ylphenyl)benzene, 40 nm) 、 PBD (40 nm) 和 B3PYMPM (4,6-bis(3,5-di(pyridin- 3-yl)phenyl)-2-methylpyrimidine, 40 nm) 。首先,加 入電子傳輸層後又再度提升元件的效率,但B3PYMPM 卻會造成光色有紅

300 400 500 600 700

0.0

76

Luminance (cd/m

2

)

300 400 500 600 700

0.0

77

300 400 500 600 700

0.0

78

第六章、 結論與未來展望

本篇論文成功合成出六個以 PCP 為主要核心的材料 HJJ-1、HJJ-2、

HJJ-3、HJJ-4、HJJ-5 和 HJJ-6。藉由引入不同苯胺推電子基、CN 拉電

子 基 , 以 及 推 、 拉 電 子 基 團 與 PCP 之 間 插 入 苯 環 , 可 調 控 分 子 之 HOMO/LUMO 能差。HJJ 分子之發光落於藍光範圍,其中 carbazole 系列 化合物之

E g

arylamine 系列為高。HJJ-2 在溶劑中的 PLQY 可達 34%,

製成薄膜後的PLQY 更高達 82%。HJJ 分子之熱裂解溫度大於 250

o

C,其 中五個化合物並經X-ray 晶體繞射證實結構。化合物 HJJ-2 且具有雙極性 載子傳輸能力,具有做成 host 材料或是藍光 emitter 的潛力;製成含有電

子傳輸層以及電洞傳輸層後的元件有0.5%的效率值。未來將朝提高分子之

玻璃轉移溫度、平衡電子與電洞傳輸速率,以及三重態之能階,以利做為 摻雜磷光材料之主體,乃至TADF 材料之應用。

79

第七章、 參考文獻

1. 陳金鑫, 黃孝文, OLED-夢幻顯示器 Materials and Devices-OLED 材 料與元件, 五南圖書, 2009.

2. 簡金雄, 陳金鑫, 二十一世紀的明星產業-有機發光二極體平面顯示器 技術, 光電科技, 24, 2001.

3. AN OIDA TECHNOLOGY ROADMAP, Organic Light Emitting Diodes

(OLEDs) for General Illumination Update; M. Stolka, 2002.

4. (a) A. Bernanose, M. Comte, P. Vouaux, J. Chim. Phys. 1953, 50, 64. (b) A.

Bernanose, P. Vouaux, J. Chim. Phys. 1953, 50, 261. (c) A. Bernanose, J.

Chim. Phys. 1955, 52, 396.

5. C. W. Tang, S. A. Van Slyke, Appl. Phys. Lett. 1987, 51, 913.

6. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature 1990, 347, 539.

7. Essentials of molecular photochemistry; A. Gilbert, J. E. Baggott;

Wiley-Blackwell, 1991.

8. (a) W.-C. Shen, Y.-K. Su, L.-W. Ji, Mater. Sci. Eng. A, 2006, 445, 509. (b) B. Ruhstaller, S. A. Carter, S. Barth, H. Riel, W. Riess, J. C. Scott, J. Appl.

Phys. 2001, 83, 4575.

9. M. Stoβel, J. Staudigel, F. Steuber, J. Blassing, J. Simmerer, A. Winnacker,

Appl. Phys. Lett. 2000, 76, 115.

10. J. Kido, C. Ohtaki, K. Okuyama, K. Nagai, Jpn. J. Appl. Phys. 1993, 32, 917.

11. E. Polikarpov, J. S. Swensen N. Chopra, F. So, A. B. Padmaperuma, Appl.

80

Phys. Lett. 2009, 94, 223304.

12. T. H. Huang, J. T. Lin, L. Y. Chen, Y. T. Lin, C. C. Wu, Adv. Mater. 2006,

18, 602.

13. M. A. Baldo, D. F. O'Brien, Y. You, Shoustikov, S. Sibley, M. E.

Thompson, S. R. Forrest, Nature 1998, 395, 151.

14. Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, W.

Huang, Adv. Mater. 2014, 26, 7931.

15. K. Shizu, H. Tanaka, M. Uejima, T. Sato, K. Tanaka, H. Kaji, C. Adachi, J.

Phys. Chem. C 2015, 119, 1291.

16. H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012,

492, 234.

17. T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, W. J. Feast,

Appl. Phys. Lett. 1999, 75, 1697.

18. J. Salbeck, N. Yu, J. Bauer, F. WeissGrtel, H. Bestgen, Synth. Met. 1997,

91, 209.

19. K. R. J. Thomas, J. T. Lin, Y. T. Tao, C. W. Ko, J. Am. Chem. Soc. 2001,

123, 9404.

20. I. D. Parker, J. Appl. Phys. 1994, 75, 1656. (b) J. Shewchun, J. Dubow, C.W. Wilmsen, R. Singh, D. Burk, J. F. Wager, J. Appl. Phys. 1979, 50, 2832. (c) N. Bakasybramanian, A. Subrahmanyam, J. Electrochem. Soc.

1991, 138, 322.

21. S. A. VanSlyke, C. H. Chen, C. W. Tang, Appl. Phys. Lett. 1996, 69, 2160.

22. (a) C. J. Brown, A. C. Farthing, Nature 1949, 164, 915. (b) D. J. Cram, H.

Steinberg, J. Am. Chem. Soc. 1951, 73, 5691. (c) Cyclophane Chemistry:

81

Synthesis, Structures and Reactions; F. Vögtle, John Wiley & Sons:

Chichester, 1993. (d) Modern Cyclophane Chemistry; R. Gleiter, H, Hopf;

Wiley-VCH: Weinheim, 2004.

23. (a) J. L. Zafra, A. M. Onotoria, M. Peña-Alvarez, M. Samoc, J. Szeremeta, F. J. Ramírez, M. D. Lovander, C. J. Droske, T. M. Pappenfus, L.

Echegoyen, J. T. L. Navarrete, N. Martin, J. Casado, J. Am. Chem. Soc.

2017, 139, 3095. (b) S. D. Perera, S.G. Urquhart, J. Phys. Chem. A 2017, 121, 4907.

24. V. Thanikachalam, E. Sarojpurani, J. Jayabharathi, P. Jeeva, New J. Chem.

2017, 41, 2443. (b) Y. Hu, W. Cai, L. Ying, D. Chen, X. Yang, X. Jiang, S.

Su, F. Huang, Y. Cao, J. Mater. Chem. C 2018, 6, 2690. (c) X. Liua, Q.

Tian, D. Zhao, J. Fan, L. Liao, Org. Electron. 2018, 56, 186.

25. C.-Y. Chan, L.-S. Cui, J. U. Kim, H. Nakanotani, C. Adachi Adv. Funct.

Mater. 2018, 28, 1706023.

26. J. L. Bredas, R. Silbey, D. S. Boudreaux, R. R. Chance, J. Am. Chem. Soc.

1983, 105, 6555.

27. A. M . Brouwer, Pure Appl. Chem., 2011, 83, 2213.

28. J. Russ. Gen. Chem. 2012, 82, 206.

29. J. R. Malpass, D. A. Hemmings, A. L. Wallis, S. R. Fletcher, S. Patel, J.

Chem. Soc. Perkin Trans.1 2001, 9, 1044.

30. H. Wolf, D. Leusser, M. R. V. Jørgensen, R. Herbst-Irmer, Y. Chen, E.

Scheidt, W. Scherer, B. B. Iversen, D. Stalke, Chem. Eur. J. 2014, 20, 7048.

31. H. J. Reich, D. J. Cram, J. Am. Chem. Soc. 1969, 91, 3527. (b) The

Synthesis and Applications of [2.2]Paracyclophane Derivatives; C. Hicks;

82

Dublin Institute of Technology, 2016.

32. A. Klapars, J. Antilla, X. Huang, S. L. Buchwald, J. Am. Chem. Soc. 2001,

123, 7727. (b) A. Kiyomori, J. F. Marcoux, S. L. Buchwald, Tetrahedron Lett. 1999, 40, 2657. (c) M. Wolter, A. Klapars, S. L. Buchwald, Org. Lett.

2001, 3, 803.

33. D. Giang, J. F. Hartwig, J. Am. Chem. Soc. 2009, 131, 11049.

34. (a) N. Miyaura, A. Suzuki, Chem. Commun. 1979, 19, 866. (b) A. Suzuki,

J. Organomet. Chem. 1999, 576, 147. (c) D. D. Winkle and K. M. Schaab, Org. Process Res. Dev. 2001, 5, 450.

35. J. Franck, Trans. Faraday Soc. 1926, 21, 536.

36. (a) M. Hussein, N. Assadi, D. A. H. Hanaor, J. Appl. Phys. 2013, 113, 233913. (b) M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J.

Hasnip, S. J. Clark, M. C. Payne, J. Phys. Condens. Matter. 2002, 14, 2717.

37. X. Yang, H. Liu, R. Qiao, Y. Jiang, Y. Zhao, Synlett. 2010, 101. (b) Laser

Spectroscopy: Basic Concepts and Instrumentation; W. Demtröder;

Springer, 2013. (c) Atomic Spectroscopy; James W. Robinson; MARCEL DEKKER Incorporated, 2013.

38. Modern Physical Organic Chemistry; E. V. Ansyl, D. A. Dougherty;

University Science Books, 2005.

39. (a) Principles of Semiconductor Devices, Chapter 2: Semiconductor

Fundamentals; B. V. Zeghbroeck; 2011. (b) Supramolecular

Photosensitive and Electroactive Materials, Chapter 3 - Electronic Properties of Molecular Organic Semiconductor Thin Films; D.

Schlettwein; Academic Press, 2001.

83

40. (a) Y. Hong, J. W. Y. Lam, T. B. Zhong, Chem. Soc. Rev. 2011, 40, 5361. (b) M. Ju, Y. Hong, J. W. Y. Lam, A. Qin, Y. Tang, J. W. Y. Lam, Adv. Mater.

2014, 26, 5429. (c) M. Ju, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam, J.

W. Y. Lam, Chem. Rev. 2015, 115, 11718.

41. T.-H. Huang, J. T. Lin, L.-Y. Chen, Y.-T. Lin, C.-C. Wu, Adv. Mater. 2006,

18, 602.

42. (a) H. Bässler, Int. J. Mod. Phys. B 1994, 8, 847. (b) H. Bässler, Philos.

Mag. B 1992, 65, 795. (c) W. D. Gill, J. Appl. Phys. 1972, 43, 5033.

43. L.-B. Lin, R. H. Young, M. G. Mason, S. A. Jenekhe, P. M. Borsenberger,

Appl. Phys. Lett. 1998, 72, 864.

44. Y. Li, M. K. Fung, Z. Xie, S.-T. Lee, L.-S. Hung, J. Shi, Adv. Mater. 2002,

14, 1317.

84

附錄

85

附圖一 Br

2

PCP

1

H NMR(上)、BrPCPCN

1

H NMR(下)

86

NAME jim_500_20160906 EXPNO 1

114.634 116.534 119.075 120.835 125.254 125.358 129.220 130.467 131.721 132.611 135.425 137.340 140.387 140.504 140.676 143.085 143.663

NAME jim_500_20160906

EXPNO 2

87

附圖三 HJJ-1

1

H NMR(上)、

13

C NMR(下)

88

89

附圖五 HJJ-2

1

H NMR(上)、

13

C NMR(下)

90

91

110.473 119.042 123.029 123.208 124.600 128.583 129.296 130.342 132.123 132.228 132.353 134.620 135.028 135.139 136.755 136.873 139.499 140.163 140.395 141.868 145.826 146.775 147.643

NAME jim201806

EXPNO 6

92

93

94

附圖八 HJJ-5

1

H NMR(上)、

13

C NMR(下)

95

76.681 76.998 77.316 109.867 120.023 120.353 123.470 125.958 126.549 126.991 128.780 128.958 131.044 132.220 134.057 135.237 136.514 136.679 137.465 138.926 139.687 140.249 140.812 141.432 141.829

NAME jim20170406

EXPNO 2

96

97

附表一 HJJ-1 的晶體結構數據(CCDC-857762)(一)

Identification code i16481

Empirical formula C29 H24 N2

Formula weight 400.50

Temperature 100.0(2) K

Wavelength 0.71073 Å

Crystal system Monoclinic

Space group P 21/n

Unit cell dimensions a = 7.9533(3) Å = 90°.

b = 28.4522(11) Å = 96.185(2)°.

c = 9.0157(3) Å  = 90°.

Volume 2028.28(13) Å 3

Z 4

Density (calculated) 1.312 Mg/m 3

Absorption coefficient 0.076 mm -1

F(000) 848

Crystal size 0.420 x 0.220 x 0.140 mm 3

Theta range for data collection 1.431 to 27.102°.

Index ranges -10<=h<=10, -36<=k<=36, -11<=l<=11

Reflections collected 39917

Independent reflections 4479 [R(int) = 0.0739]

Completeness to theta = 25.000° 100.0 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.9705 and 0.9205

Refinement method Full-matrix least-squares on F 2

Data / restraints / parameters 4479 / 0 / 281

Goodness-of-fit on F 2 1.030

Final R indices [I>2sigma(I)] R1 = 0.0468, wR2 = 0.1046

R indices (all data) R1 = 0.0787, wR2 = 0.1238

Extinction coefficient 0.0113(13)

Largest diff. peak and hole 0.292 and -0.244 e.Å -3

98

附表一 HJJ-1 的晶體結構數據(CCDC-857762)(二)

附表二 HJJ-2 的晶體結構數據(CCDC-1857761)(一)

Identification code i16538

Empirical formula C35 H28 N2

Formula weight 476.59

Temperature 100(2) K

Wavelength 0.71073 Å

Crystal system Monoclinic

Space group P 21

Unit cell dimensions a = 10.9109(5) Å = 90°.

b = 7.7323(4) Å = 99.862(2)°.

c = 15.6486(8) Å  = 90°.

99

Volume 1300.71(11) Å 3

Z 2

Density (calculated) 1.217 Mg/m 3

Absorption coefficient 0.071 mm -1

F(000) 504

Crystal size 0.639 x 0.426 x 0.058 mm 3

Theta range for data collection 1.321 to 27.100°.

Index ranges -13<=h<=13, -9<=k<=9, -20<=l<=20

Reflections collected 59652

Independent reflections 5712 [R(int) = 0.2462]

Completeness to theta = 25.000° 100.0 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.9705 and 0.5518

Refinement method Full-matrix least-squares on F 2

Data / restraints / parameters 5712 / 1 / 336

Goodness-of-fit on F 2 1.119

Final R indices [I>2sigma(I)] R1 = 0.1150, wR2 = 0.3371

R indices (all data) R1 = 0.1446, wR2 = 0.3502

Absolute structure parameter -4(10)

Extinction coefficient 0.16(3)

Largest diff. peak and hole 0.683 and -0.460 e.Å -3

100

附表二 HJJ-2 的晶體結構數據(CCDC-1857761)(二)

附表三 HJJ-3 的晶體結構數據(CCDC-1857781)(一)

Identification code i17239

Empirical formula C41 H32 N2

101

Formula weight 552.68

Temperature 100.0(2) K

Wavelength 0.71073 Å

Crystal system Triclinic

Space group P -1

Density (calculated) 1.240 Mg/m 3

Absorption coefficient 0.072 mm -1

F(000) 2336

Crystal size 0.523 x 0.441 x 0.204 mm 3

Theta range for data collection 1.373 to 27.103°.

Index ranges -15<=h<=15, -19<=k<=19, -42<=l<=42

Reflections collected 204610

Independent reflections 26089 [R(int) = 0.0661]

Completeness to theta = 25.242° 100.0 %

Absorption correction Numerical

Max. and min. transmission 0.99926 and 0.99787

Refinement method Full-matrix least-squares on F 2

Data / restraints / parameters 26089 / 0 / 1549

Goodness-of-fit on F 2 1.024

Final R indices [I>2sigma(I)] R1 = 0.0548, wR2 = 0.1244

R indices (all data) R1 = 0.0824, wR2 = 0.1389

Extinction coefficient n/a

Largest diff. peak and hole 0.379 and -0.279 e.Å -3

102

附表三 HJJ-3 的晶體結構數據(CCDC-1857781)(二)

附表四 HJJ-4 的晶體結構數據(CCDC-1857782)(一)

Identification code i16164

Empirical formula C29 H22 N2

Formula weight 398.48

Temperature 100.0(2) K

Wavelength 0.71073 Å

Crystal system Monoclinic

Space group P 21/c

Unit cell dimensions a = 9.1599(4) Å = 90°.

b = 12.6321(5) Å = 102.874(2)°.

c = 17.7149(6) Å  = 90°.

103

Volume 1998.24(14) Å 3

Z 4

Density (calculated) 1.325 Mg/m 3

Absorption coefficient 0.077 mm -1

F(000) 840

Crystal size 0.180 x 0.140 x 0.100 mm 3

Theta range for data collection 1.997 to 27.103°.

Index ranges -11<=h<=11, -16<=k<=16, -22<=l<=22

Reflections collected 20900

Independent reflections 4404 [R(int) = 0.0422]

Completeness to theta = 25.000° 100.0 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.9705 and 0.8717

Refinement method Full-matrix least-squares on F 2

Data / restraints / parameters 4404 / 0 / 281

Goodness-of-fit on F 2 1.023

Final R indices [I>2sigma(I)] R1 = 0.0405, wR2 = 0.0883

R indices (all data) R1 = 0.0624, wR2 = 0.1011

Extinction coefficient 0.0057(7)

Largest diff. peak and hole 0.275 and -0.207 e.Å -3

104

附表四 HJJ-4 的晶體結構數據(CCDC-1857782)(二)

附表六 HJJ-6 的晶體結構數據(CCDC-1857765)(一)

Identification code i16757

Empirical formula C82 H60 N4

Formula weight 1101.34

Temperature 100.0(2) K

Wavelength 0.71073 Å

Crystal system Monoclinic

Space group P 21/n

Unit cell dimensions a = 7.3916(5) Å = 90°.

b = 26.3657(16) Å = 92.980(2)°.

c = 30.3012(17) Å  = 90°.

105

Volume 5897.3(6) Å 3

Z 4

Density (calculated) 1.240 Mg/m 3

Absorption coefficient 0.072 mm -1

F(000) 2320

Crystal size 0.440 x 0.360 x 0.340 mm 3

Theta range for data collection 1.024 to 27.123°.

Index ranges -9<=h<=9, -33<=k<=33, -38<=l<=38

Reflections collected 181301

Independent reflections 13052 [R(int) = 0.0636]

Completeness to theta = 25.000° 100.0 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.9705 and 0.8642

Refinement method Full-matrix least-squares on F 2

Data / restraints / parameters 13052 / 0 / 775

Goodness-of-fit on F 2 1.182

Final R indices [I>2sigma(I)] R1 = 0.0671, wR2 = 0.1458

R indices (all data) R1 = 0.0816, wR2 = 0.1524

Extinction coefficient n/a

Largest diff. peak and hole 0.317 and -0.264 e.Å -3

106

附表六 HJJ-6 的晶體結構數據(CCDC-1857765)(二)

相關文件