• 沒有找到結果。

第五章 結論與展望

5.2 展望

雖然我們成功地以修正過後的分段式接點法量出量子點元件精確的增 益及吸收頻譜,然而若將改良型分段式接點法應用在量子井元件上,仍有 些問題尚待克服,比如說,量得的增益不夠大,或是雜亂的增益頻譜,其 或許肇因於蒸鍍於輸出鏡面的抗反射層。因為我們的量子井元件用的抗反 射層和本論文中量子點元件所使用是一樣的,如圖 3.7 所示,反射率最低 點在靠近 1400nm 左右,然而,我們的量子井元件輸出波長不屬於這個波段 (在小於 1000nm),因此造成不合理的輸出光。

在本論文中我們討論了以多段式元件為基礎所量測的增益及吸收頻 譜,然而多段式元件的應用絕非僅止於此,在製程技術與量測系統皆已具 備下,可以開始極具潛力的多段式接點量子點超冷光二極體元件的研究,

68

藉著調變每一段的長度和注入電流,甚至是將吸收區施加不同程度的負偏 壓去努力,得到各種元件結構之頻寬與輸出功率的最佳化。

69

參考資料

[1] Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S.

Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron., vol. 42, no. 7, pp.

725-732, 2006

[2] B. W. Hakki and T. L. Paoli, “CW degradation at 300°K of GaAs double hetrostructure junction lasers. II. Electronic gain” Appl. Phys. Lett. vol. 44, 4113, 1973.

[3] G. H. B. Thomson, G. D. Henshall, J. E. A. Whiteaway, and P. A. Kirkby,

“Narrow‐beam five‐layer (GaAl)As/GaAs heterostructure lasers with low threshold and high peak power,” Appl. Phys. Lett., vol. 47, pp. 1501-1514, 1976.

[4] C. H. Henry, R. A. Logan, and F. R. Merritt, “Measurement of gain and absorption spectra in AlGaAs buried hetrostructure lasers” Appl. Phys.

Lett. vol. 51, pp. 3042-3050, 1980.

[5] A. Oster, G. Erbert, and H. Wenzel, “Gain spectra measurements by a variable stripe length method with current injection,” Electron. Lett., vol.

33, no. 10, pp. 864-866, 1997.

70

Hopkinson, “Optical mode loss and gain of multiple-layer quantum-dot lasers,” Appl. Phys. Lett. vol. 78, no. 18, pp. 2629-2631, 2001.

[8] C. J. Huang, G. Lin, “Characterization of chirped-multilayer quantum dot laser and feasibility study of its application on Optical Coherence Tomography,” NCTU Master Thesis, 2009.

[9] V. M. Ustinov, A. E. Zhukov, A. Y. Egorov, and N. A. Maleev, “Quantum Dot Lasers,” Oxford University Press, 2003.

[10] P. D. L. Greenwood, K. V. Patel, D. T. D. Childs, K. M. Groom, B. J.

Stevens, M. Hopkinson, and R. A. Hogg, “Multi-contact quantum dot superluminescent diodes for optical coherence tomography,” Proc. SPIE, vol. 7230, pp. 72300C-72300C-10, 2009.

[11] Y. Arakawa and H. Sasaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett., vol. 40, no. 11, pp. 939-940, 1982.

“High performance three layer 1.3μm InAs-GaAs quantum dot lasers with very low continuous wave room temperature threshold currents,” IEEE Photon. Technol. Lett., vol. 17, no. 6, pp. 1138, 2005.

[14] K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H.

Ebe, M. Sugawara, and Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3μm p-doped quantum dot lasers without

71

current adjustment,” J. Appl. Phys., vol. 43, no. 8B, pp. L 1124-L 1126, 2004.

[15] T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F.

Lester, “Gain and linewidth enhancement factor in InAs quantum dot laser diodes,” IEEE Photon. Technol. Lett., vol. 11, no. 12, pp. 1527-1529, 1999.

[16] Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Z. Z. Sun, and F. Q. Liu,

“High-performance quantum dot superluminescent diodes,” IEEE Photon.

Technol. Lett., vol. 16, no. 1, pp. 27-29, 2004.

[17] M. Rossetti, L. Li, A. Markus, A. Fiore, L. Occhi, C. Vélez, S. Mikhrin, I.

Krestnikov, and A. Kovsh, IEEE J. Quantum Electron., vol. 43, no. 7-8, pp.

676-686, 2007.

[18] Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L.

Gray, and L. F. Lester, “1.3μm quantum dot multi-section superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett., vol.

19, no. 7, pp. 11-13, 2007.

[19] 盧廷昌, 王興宗, “半導體雷射導論,” 五南出版社, 2008.

[20] Z. Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu and Z.-G. Wang,

“Quantum-dot superluminescent diode: A proposal for an ultra-wide output spectrum,” Opt. Quantum Electron., vol. 31, pp. 1235-1246, 1999.

[21] N. B. Abraham, J. C. Huang, D. A. Kranz, E. B. Rockower,

“Amplified-Spontaneous-Emission Intensity Fluctuations, ” Phys. Review A, vol. 24, no. 5, pp. 2556, 1981.

[22] J. T. Verdeyen, “Laser electronics”, Prentice Hall,Englewood Cliffs, NJ, 1995.

[23] G. Lin, C. Y. Yang, W. C. Tseng, C. P. Lee, K. F. Lin, R. Xuan, and J. Y. Chi,

72

“Novel chirped multilayer quantum-dot lasers,” Proc. SPIE, Vol. 6997, pp.

69970R, 2008.

[24] A. E. Zhukov, V. M. Ustinov, A. Y. Egorov, A. R. Kovsh, A. F. Tsataulnikov, N. N. Ledentsov, S. V. Zaitsev, N. Y. Gor-deev, P. S. Kopev, and Z. I.

Alferov, “Negative characteristics temperature of InGaAs quantum dot injection laser, ” Jpn. J. Appl. Phys., vol. 36, no.6B, pp. 4216-4218, 1997.

[25] N. N. Ledentsov, A. R. Kovsh, D. Ouyang, A .E. Zhukov, V. M. Ustinov, M.

V. Maximov, Yu. M. Shernyakov, N. V. Kryzhanovskaya, I. N. Kaiander, R.

Sellin, and D. Bimberg, “Unique property of quantum dot lasers,”

IEEE-Nano, 2003.

[26] Ch. Ribbat, R. L. Sellin, I. Kaiander, F. Hopfer, N. N. Ledentsov, D.

Bimberg, A. R. Kovsh, V. M. Ustinov, A. E. Zhukov, and M. V. Maximov,

“Complete suppression of filamentation and superior beam quality in quantum-dot lasers, ” Appl. Phys. Lett., vol. 82, pp. 952-954, 2003.

[27] Y. C. Xin, “Quantum Dot Multi-Section Light Emitters,” Dissertation, University of New Mexico, Albuquerque, 2006.

[28] S. Suchalkin, D. Westerfeld, G. Belenky, J. D. Bruno, J. Pham, F. Towner, and R. L. Tober, “Measurement of semiconductor laser gain by the segmented contact method under strong current spreading conditions,”

IEEE J. Quantum Electron., vol. 44, no. 6, 2008.

73

簡歷(Vita)

姓名:葉庭聿 (Ting-Yu Yeh) 性別:男

出生年月日:民國 75 年 4 月 5 日

出生地 / 籍貫:台北市 / 福建省同安縣 電子信箱: willie.ee93 @ nctu.edu.tw 學歷:

高雄市立小港國民小學 (1992.09 ~ 1998.06) 高雄市立小港國民中學 (1998.09 ~ 2001.06) 高雄市立高雄高級中學 (2001.09 ~ 2004.06) 國立交通大學電子工程學系 (2004.09 ~ 2008.06) 國立交通大學電子研究所碩士班 (2008.09 ~ 2010.09)

碩士論文題目:

半導體量子點光電元件增益頻譜之研究 Study on Gain Spectrum of Semiconductor

Quantum Dot Emitters

相關文件