• 沒有找到結果。

「十二年國民教育基本課程綱要」將「探究與實作」課程列為自然科部定 必修課程,本研究分別以建模導向與專題導向設計課程進行探究與實作,結果 顯示符合「十二年國民教育基本課程綱要」的精神,同時亦能有效提升學生的 科學素養以及讓學生能夠在課程中產出學習成果。

綜合本研究的實施經驗與研究結果,有以下幾點建議可作為高中教師在探 究與實作課程設計之參考:

(一)開放式問題探究易引發動機但也易感挫折,教師可依學生特質評估採用

開放式問題的探究,可以讓學生自行選擇真實問題進行探究,對學生而 言,較容易引起動機,本研究也觀察到學生願意利用課餘時間繼續進行問題的 探究。然而開放式問題探究涉及的變因複雜,會造成學生較重的負擔,也容易 讓學生感受到挫折。以本研究而言,即有一組的學生無法完成問題探究,產出 作品。因此,建議教師可視學生特質,評估課程採用是否此一方式設計。

(二)建議增加學生實作時間以及反思與論證的學習機會,提升實作作品品質

根據學生晤談資料,本研究課程提供學生最大的幫助在於知道研究流程的 規劃,學生在進行問題探究時,明白目前處在哪一個階段以及接下來要做什 麼。顯現兩種課程設計的鷹架課程皆有發揮功能,對於學生之後問題的探究產 生幫助。然而三周的探究開放式的問題,時間過於短暫。學生花費時間皆用於 模型的建立或是實驗的執行,對於後續的階段,例如模型效化或是論證與建模 缺乏時間與機會進一步作討論,致使本研究在分析學生的實作作品時,學生的 建模品質或是專題品質都有提升的空間。建議教師在課程規劃時,可以搭配問

167

題的探究與實作,設計合適的鷹架課程,協助學生有關研究流程規劃、探究調 查技巧以及科學背景知識搭設的增能。同時可以透過跨科協同,增加學生實作 的時間以及與同組反思、回饋的機會,讓學生可以進一步透過模型效化歷程,

或是論證與建模歷程,提升實作品品質。相信這些學習機會的增加,也可望提 升學生解釋與推理的科學素養。

(三)討論定量關係 需考量學生數學能力

目前各高中安排探究與實作課程的授課年級為高一及高二,建議教師在設 計問題探究時需評估學生的數學能力或是使用數學軟體的能力。依據本研究的 課程實驗,當學生在鷹架課程時,運用excel軟體討論鉛直彈簧運動週期的定量 關係,多數組別有能力找到正確的週期與質量的定量關係。然而,在進行開放 式問題的討論時,由於牽涉因素較為複雜,學生無法找到變因之間的定量關 係。因此,若教師預計在課程中讓學生進行變因的定量關係的探究,建議應評 估學生的數學能力或使用數學軟體的能力,讓學生在蒐集實驗的數據後,有能 力進行後續變因的討論,提升教學與學習的品質。

(四)建議將科學建模精神融入探究與實作課程

模型與建模在科學教育研究上已累積豐碩的成果,也陸續獲得各國的重視 紛紛置入科學課程標準中。回顧文獻可以發現研究者利用科學建模引導學生學 習的科學概念範疇亦有增廣的趨勢,從初期研究者選擇單一錨定現象或概念讓 學生進行建模,如 Schwarz 等人(2009)的研究運用建模讓學生學習水汽蒸發與 凝結的概念;Weizman & Fortus(2007)的研究運用建模讓學生學習光線與陰影成 因的概念。到近年來研究運用建模讓學生探究複雜程度較高的科學概念,例如 Artdeja, Meelaa, & Sriboonlert(2014)的研究則選擇有關氣體概念作為題材,讓學 生透過建模進行學習,討論氣體壓力、氣體體積與氣體溫度的關係,包含波以 耳定律、查理定律以及氣體擴散現象。Jong,Chiu & Chung(2015)改變傳統教材 的編寫方式,改以建模導向的方式編寫教材,讓學生學習理想氣體方程式。上 述的研究結果皆發現學生在不同的模型導向的教學策略下,雖然面對比較複雜

168

的科學概念,也都有良好的學習成果,產生顯著差異。邱美虹(2019)進一步指 出建模能力的因素應包含認知層面、後設知識以及問題解決與探究實作三方 面,別提出建模能力應實踐於探究活動中,讓學生可以成為建模實踐者。

本研究透過將模型外顯化的策略,在高中探究與實作課程試行建模導向之 探究課程,融入模型與建模的觀點於學生的探究活動中,讓學生進行開放式問 題探究,研究結果發現課程設計符合領綱精神,並且發現學生在科學素養、建 模能力、模型本質皆產生良好的學習成果。建議教師在設計探究與實作課程 時,可以將科學建模精神融入探究與實作課程,更符合科教領域發展趨勢。

另外,本研究發現專題導向探究教學適合素養評量前測較高的學生學習,

而建模導向探究教學適合素養評量前測較低的學生學習。此一發現雖應待後續 研究加以討論證實。但若模型與建模可以協助素養評量前測較低的學生作為工 具而得到更佳的學習效果,則科學建模將具備更佳的推廣價值。

(五)建議協助教師對於模型與建模的增能,培育學生的建模與探究能力

依據本研究結果,專題導向探究組則在模型的本體概念有達顯著效果,但 在認識與方法二個面向則無顯著差異。另外,建模導向探究組的學生,無論是 對於模型或建模的學習,效果皆優於專題導向探究組。此結果與 Schwarz 等人 (2009)的研究相符,Schwarz 等人認為參與模型導向的活動有助於改善對於科學 模型和建模的觀點。相對的,若對模型有較佳的了解,也對學習者透過創造和 使用模型來學習科學有很大的幫助。

目前臺灣高中教師對於建模的認識有限,更缺乏指導學生進行建模導向科 學探究之實徵研究及相關課程。建議未來能有更多的建模課程、評量工具及實 徵研究,提供更完整的理論架構。當教師對模型與建模更多的瞭解,則可以期 待教師能夠幫助學生實際參與建模導向探究,培育學生的建模能力與探究能 力。

169

170

劉俊庚(2010)。探討模型與建模對於學生學習原子概念之影響。國立臺灣師範 大學科學教育研究所博士論文(未出版)。

劉湘瑤(2016)。科學探究的教學與評量。科學研習,55(2),5-11

鐘建坪(2010)。引導式建模導向探究教學初探。科學教育月刊,328,2-19。

鐘建坪(2013)。模型本位探究策略在不同場域學習成效之研究。國立臺灣師 範大學科學教育研究所博士論文(未出版)。

國家教育研究院(2018)。十二年國民基本教育課程綱要國民中小學暨普通型高 級中等學校——自然科學領域。查詢日期:2018 年 11 月 20 日,檢自 https://www.naer.edu.tw/ezfiles/0/1000/attach/63/pta_18538_24Y0851_60502.p df。

劉湘瑤(2016)。科學探究的教學與評量。科學研習,55(2),5-11

謝州恩、吳心楷(2005)。探究情境中國小學童科學解釋能力成長之研究。師大 學報:科學教育類,50(2),55-84。

171

英文部分

Apedoe, X. S. (2008). Engaging students in inquiry: Tales from an undergraduate geology laboratory-based course. Science Education, 92(4), 631-663.

Bell, D. (2002). Making science inclusive: Providing effective learning opportunities for children with learning difficulties. Support for Learning, 17(4), 156-161.

Bybee, R. W. (1997). Achieving scientific literacy. N. H. Heinemann: Portsmounth.

Bybee, R. W. (2000). Teaching science as inquiry. In J. Minstrell, & E. van Zee (Eds.), Inquiring into inquiry learning and teaching in science (20-46). Washington, DC: American Association for the Advancement of Science.

Brickman P., Gormally C., Armstrong N., Hallar B. (2009). Effects of inquiry-based learning on students' science literacy and confidence. Int. J. Schol. Teach.

Learn. 3, 1-22.

Bransford, J., Brown, A. L., & Cocking, R. R. (1999). How people learn: Brain, mind, experience, and school. Washington, DC: National Academy Press.

Buckley, B. C. & Boulter, C. J. (2000). Investigating the Role of Representations and Expressed Models in Building Mental Models. In J. K. Gilbert and C.J.

Boulter(eds.), Developing Models in Science Education (pp.119-135.) Netherlands: Kluwer Academic Publishers.

Buckley, B. C., Gobert, J. D., Kindfield, A. C. H., Horwitz, P., Tinker, R. F., Gerlits, B., et al. (2004). Model-based teaching and learning with BioLogicaTM: What do they learn? How do they learn? How do we know? Journal of Science Education and Technology, 13(1), 23-41.

Campbell, B., Kaunda, L., Allie, S., Buffler, A. & Lubben, F. (2000). The communication of lab investigations by university entrants. Journal of Research in Science Teaching, 37(8), 839–853.

Campbell, T., Abd-Hamid, N. H., & Chapman, H. (2010). Development of

instruments to assess teacher and student perceptions of inquiry experiences in science classrooms. Journal of Science Teacher Education, 21(1), 13–30.

Cheng, M. F., Lin, J. L., Lin, S. Y., & Cheng, C. H. (2017). Scaffolding middle school and high school students’modeling processes. Journal of Baltic Science

Education, 16(2), 207–217.

Chi, M. T. H. (1992). Conceptual change within and across ontological categories:

Implications for learning and discovery in sciences. In R.Giere (Ed.), Cognitive models of science:Minnesota studies in the philosophy of science(129-186).

Minneapolis: University of Minnesota Press.

Chiu, M.-H., & Lin, J.-W. (2019). Modeling competence in science education.

Disciplinary and Interdisciplinary Science Education Research, 1. Retrieved

172

December 10, 2019, from

https://diser.springeropen.com/articles/10.1186/s43031-019-0012-y

Clement, J. (2000). Model based learning as a key research area for science education.

International Journal of Science Education, 22(9), 1041-1053.

Costenson, K. & Lawson, A.E. (1986). Why isn't inquiry used in more classrooms?

The American Biology Teacher, 48(3), 150-158.

de Jong, T., Sotiriou, S., & Gillet, D. (2014). Innovations in STEM education: The Go-Lab federation of online labs. Smart Learning Environments, 1, 3–16.

Dewey, J.[1933(1910)]. How we think. Lexington, MA: D.C. Heath.

diSessa, A. A.(1988). Knowledge in pieces. In G. Forman 8: P. Pufall (Eds), Constructivism in the computer age (pp. 49-70).

Driver, R., Asoko, H., Leach, J., Mortimer, E., & Scott, P. (1994). Constructing scientific knowledge in the classroom. Educational Researcher, 23 (7), 5-12.

Edelson, D.C., Gordin, D.N. & Pea, R.D. (1999). Addressing the challenges of

inquiry-based learning through technology and curriculum design. Journal of the Learning Sciences, 8(3-4), 391-450.

Ertepinar, H. & Geban, O. (1996). Effect of instruction supplied with the

investigativeoriented laboratory approach on achievement in a science course.

Educational Research, 38, 333–344.

European CommissionScience education now: A renewed pedagogy for the future of Europe. European Commission., Brussels (2007)

Gibson, H. L. (1998). Case studies of an inquiry-based science programs’ impact on students’ attitudes towards science and interest in science careers. ERIC

document reproduction service no. ED 417 980.

Gibson, H. L., & Chase, C. (2002). Longitudinal impact of an inquiry-based science program on middle school students’ attitudes toward science. Science Education, 86, 693-705.

Giere, R. N. (1999). Using models to represent reality. In L. Magnani, N.

J.Nersessian, & P.Thagard (eds.), Model-based reasoning in scientific discovery ( 41-57). New York:Kluwer.

Gilbert, J. K. (1993). Models and modeling in science education. Hatfield: The Association for Science Education.

Gilbert, J. K. (2004). Models and modeling : routes to more authentic science education, International Journal of Science, & Math Education, 2, 115-130.

Gilbert, J. K., Boulter, C., J., & Elmer, R. (2000). Positioning models in science education and in design and technology education. In J. K. Gilbert and C. J.

Boulter (eds.)

Glynn, S. M., & Duit, R. (1995). Learning science meaningfully: constructing

173

conceptual models. In S. M. Glynn & R. Duit (eds.), Learning science in the schools: Research reforming practice. New Jersey: Lawrence Erlbaum Associates.

Gobert, J. D., & Buckley, B., et al. (2000). Introduction to model-based teaching and learning in science education. International Journal of Science Education, 22(9), 891–894.

Greca, I. M., & Moriea, M. A. (2000). Mental model, conceptual models, and modelling.International Journal of Science Education, 22(1), 1-11.

Grosslight, L.; Unger, C.; Jay, E., & Smith, C. (1991). Understanding models and their use in science conceptions of middle and high school students and experts.Journal of Research in Science Teaching, 28(9), 799-822.

Halloun, I. A. (2006).Modeling Theory in Science Education. Dordrecht, The Netherlands: Springer.

Hansen, M. (2002). Defining inquiry. The Science Teacher, 69(2), 34-37.

Harlen, W. (2013). Inquiry-based learning in science and mathematics. Review of Science Mathematics & ICT Education, 7, 9–33.

Harms, N. C. & Yager, R. E. (eds.) (1981). What research says to the science teacher, Vol. 3. Washington, D.C.: National Science Teachers Association.

Harrison, A. G., & Treagust, D. F. (2000). Learning about atom, molecules, and chemical bonds: A case study of multiple-model use in grade 11 chemistry.

Science Education, 84(3), 352-381. doi:10.1002/(SICI)1098-237X(200005)84:3<352::AID-SCE3>3.0.CO;2-J

Herron, M. D. (1971). The nature of scientific enquiry. School Review, 79, 171–212.

Jeong, H., Songer, N. B., & Lee, S.-Y. (2007). Evidentiary competence: Sixth graders' understanding for gathering and interpreting evidence in scientific investigations. Research in Science Education, 37(1), 75-97.

Jong, C. P.; Chiu, M. H. & Chung, S. L. (2015).The use of modeling-based rext to

improve students’ modeling competencies.Science Education, 99(5),986–1018.

Justi, R., & Gilbert, J. K. (2002). Modelling, teachers’ views on the nature of

modeling, and implications for the education of modelers. International Journal of Science Education, 24(4), 369-387.

Keselman A. (2003) Supporting inquiry learning by promoting normative understanding of multivariable causality.Journal of Research in Science Teaching,40 (2003), pp.898-921

Kokotsaki, D., Menzies, V., & Wiggins, A. (2016). Project-based learning: A review of the literature. Improving Schools, 19(3), 267–277. doi:

10.1177/1365480216659733

Krajcik, J., & Shin, N. (2014). Project-Based Learning. In R. Sawyer (Ed.), The

174

Cambridge Handbook of the Learning Sciences (Cambridge Handbooks in Psychology, pp. 275-297). Cambridge: Cambridge University Press.

doi:10.1017/CBO9781139519526.018

Krajcik, J., Blumenfeld, P. C., Marx, R. W., Bass, K. M., & Fredricks, J. (1998).

"Inquiry in Project-Based Science Classrooms: Initial Attempts by Middle School Students. The Journal Of The Learning Sciences, 7(3&4), 313-350.

Krajcik, J. S., & Czerniak, C. L. (2014). Teaching science in elementary and middle school: A project-based approach (4th ed.). New York, NY: Routledge. 404 pp.

ISBN 978-0-415-53405-5,

Krajcik, J., Czerniak, C., & Berger, C. (1998). Teaching children science: A project-based approach. Boston, MA: McGraw-Hill.

Khan, S. (2007). Model-Based Inquiries in Chemistry. Science Education, 91, 877-905.

Lehrer, R., & Schauble, L. (2000b). Model-based reasoning in mathematics and science. In R. Glaser (Ed.), Advances in instructional psychology (Vol. 5).

Mahwah, NJ: Lawrence Erlbaum Associates, Inc.

Lesh, R., & Doerr, H. (2000). Symbolizing, communicating, and mathematizing: Key components of models and modeling. Symbolizing and communicating in

mathematics classrooms. Lawrence Erlbaum Publishers , 361– 384

Liu, C. K., & Chiu, M. H. (2010). Modeling process of structure of the atom and its implications for chemistry textbooks. Paper presented at ASERA 2010, Australia,

Liu, C. K., & Chiu, M. H. (2010). Modeling process of structure of the atom and its implications for chemistry textbooks. Paper presented at ASERA 2010, Australia,