• 沒有找到結果。

第五章 結論與建議

第三節 建議

一、 教學現場

根據本研究的研究發現,建議教學現場:

1. 教師在授課時,可以先了解學生的類型,從過往的學習資料判斷學生的學 業成就,對學生施測學業學習希望感量表,若班級學生的成就不高且希望 感偏低,便可考慮使用 Prevalence Model 的課程。

2. 提供學生成功正向的學習經驗,可以提升個體的希望感進而提升未來達成 成就的可能性,尤其是低成就或低希望感的學生更是需要成功的經驗,也 應鼓勵學生對自己做比較而不是和別人比較,以避免在學校長年的失敗挫 折感影響個體在未來人生的適應。

3. 對於不同類型的迷思概念,本研究發現不同理論模型的課程各佔有優勢與 劣勢,若要求現場教師於班級授課時對不同的迷思進行不同的教材轉換,

則過於不切實際。建議可以在個別輔導或補救教學時,對學生擁有的固著 迷思概念選擇較為合適的課程。

69

二、 未來研究

本研究建議未來相關的研究可以探討:

1. 進行長期的研究,再比較何種概念改變的模型較佔有優勢

本研究因受限於人力與進度壓力,僅進行兩堂的課程,若將參與不同理論模 型課程的時間拉長,讓受試者熟悉不同的教學模式再進行比較,其結果可能會與 本研究所有不同。

2. 將研究主題轉換成其他科學概念或學科

Prevalence Model 仍是新興的概念改變模型(Potvin, 2013; Potvin et al., 2015),

相關的實徵研究僅有一篇,主題為浮力,而本研究為探討不同概念改變的理論模 型對不同類型的學生的成效而選擇相同的科學概念浮力。未來的研究可試著將 Prevalence Model 擴展到其他的學科概念,以了解此模型是否有其優勢。

3. 針對不同類型的學生做教材開發

科學教育發展蓬勃,然而仍有許多低成就的學童,雖然低成就的成因複雜,

往往需要家長與教師配合從家庭、生活多方面且長時間著手,建立在此基礎點之 上,若能了解各類型學生的特質與需求,針對不同「質」的學生探討何種理論何 種教材能有效的幫助學生學習,以求落實教育的本質。

70

NSC79-0111-S-153-02-D),未出版。

江淑怡(2009)。直接教學法對提升國小四年級數學低成就學生乘法演算能力之行 動研究。國立臺北教育大學特殊教育學系特教教學碩士學位班論文,未出 版,臺北市。

江新合、許榮富、林寶山(1992)。中學生浮力相關概念發展及其相關迷思概念的 分 析 研 究 。 行 政 院 國 家 科 學 委 員 會 專 題 研 究 成 果 報 告 ( 編 號 : NSC79-0111-S-017-02-D),未出版。

江慶育(2011)。國三學生在浮力情境中對作用力辨識與力平衡理解之探討。國立 NSC96-2413-H-366-002-),未出版。

身心障礙及資賦優異學生鑑定辦法(民 102 年 9 月 2 日)

林建平(2010b)。低成就學童的心理特徵與原因之探討。國教新知,57(1),43-51。

林美和(1987)。數學障礙兒童學習問題之研究。國立臺灣師範大學社會教育學刊,

16,46-78。

林梅琴、黃佩娟(2000)。專科學生學習低成就的成因及學習困境之研究—以德明 商專為例。德明學報,16,373-396。

邱上真、洪碧霞(1996)。國語文低成就學生閱讀表現之追蹤研究(I):國民小學

71 自 http://www.bctest.ntnu.edu.tw/1040605-1.html

張春興(2006)。張氏心理學辭典。臺北市:東華。 NS89-2413-H-004-007-SSS),未出版。

許永熹(1994)。低成就的動機因素及其輔導。測驗與輔導,127,2601—2603

郭重吉(1988)。從認知的觀點探討自然科學的學習。教育學院學報,13,352-378。

郭重吉(1992)。從建構主義的觀點探討中小學數理教學的改進。科學發展月刊,

20(5),548-570。

郭重吉、吳武雄(1989)。利用晤談方式探查國中學生對重要物理概念的另有架構 之研究( I)。行政院國家科學委員會專題研究成果報告(編號: NSC 78-0111-S018-04-D),未出版。

72

黃珮書(2012)。Snyder 希望理論應用於大學生心理諮商效果之研究─大學生生活 目標量表與團體諮商方案發展。國立彰化師範大學輔導與諮商學系博士學 science pro-ject (primary). Working paper No.112. New Zealand: Waikato Univ., Science Education Research Unit ( ERIC document Reporduction Service No. ED 252395)

Botvinick, M. M. (2007). Conflict monitoring and decision making: reconciling two

73

perspectives on anterior cingulate function. Cognitive, Affective, & Behavioral Neuroscience, 7(4), 356-366.

Brault Foisy, L.-M., Masson, S., Potvin, P., & Riopel, M. (2012). Using fMRI to compare brain activity of novices and experts in science when performing a task in physical mechanics involving common misconceptions. Paper presented at the Neuroscience and education: 2012 meeting of the EARLI SIG 22, University of London, United Kingdom.

Carey, S. (1985). Conceptual change in childhood. Cambridge, MA:Mit Press.

Chan, C., Burtis, J., & Bereiter, C. (1997). Knowledge building as a mediator of conflict in conceptual change. Cognition and Instruction, 15(1), 1-40.

Chi, M. T. H. (1998). Personal communication at the learning and research development center, University of Pittsburgh, USA.

Chi, M. T. H., Slotta, J. D., & deLeeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts, Learning and instruction, 4, 27-43.

Chi, M.(1992). Conceptual change within and across ontological categories:

Implications for learning and discovery in sciences. In R. Giere (Ed.), Cognitive models of science: Minnesota studies in the philosophy of science (pp. 129-186).

Minneapolis: university of Minneosota Press.

Chinn, C. A., & Brewer, W. F. (1993). The role of anomalous data in knowledge acquisition: a theoretical framework and implications for science instruction.

Review of Educational Research, 63(1), 1-49.

Davis, G. A., & Rimm, S. B. (1989). Education of the gifted and talented. Englewood Cliffs, NJ: Prentice Hall.

Dentici, O. A., Grossi, M. G., Borghi, L., & De Ambrosis, A. (1984). Understanding floating: a study of children aged between six and eight years. European Journal of Science Education, 6(3), 235-243.

Dreyfus, A., Jungwirth, E., & Eliovitch, R. (1990). Applying the “cognitive conflict”

strategy for conceptual change—some implications, difficulties, and problems.

Science education, 74(5), 555-569.

Driver, R., Guesne, E., & Tiberghien, A. (1985). Some features of children’s ideas and their implications for teaching. Children’s ideas in science, 193-201.

Duit, R., Treagust, D. F., & Widodo, A. (2008). Teaching science for conceptual change:

Theory and practice. In S. Vosniadou (Ed.), International handbook of conceptual change (pp. 629–646). New York:

Eaton, J., Anderson, C. W., & Smith, E. L. (1983). Students' misconceptions interfere with learning: Case studies of fifth-grade students. Institute for Research on Teaching.

Gilbert, J. K., & Watts, D. M. (1983). Concepts, misconceptions and alternative conceptions: Changing perspectives in science education. Studies in Science Education, 10, 61-98.

Guzetti, B. (1993). Promoting conceptual change in science: A comparative meta-analysis of instructional interventions from reading education and science education. Reading Research Quarterly, 28(2), 117-154.

Hammer, D. (2000). Student resources for learning introductory physics. American Journal of Physics 68(S1).

Head, J. (1986). Research into 'alternative frameworks': promise and problem.

Research in Science & Technological Education, 4(2), 203-211.

Hewson, M. G. (1986). The acquisition of scientific knowledge: analysis and

74

representation ofstudent conceptions concerning density. Science Education , 7 0 , 197-200.

Hewson, P. W., & Hewson, M. G. B. (1984). The role of conceptual conflict in conceptual change and the design of science instruction. Instructional Science, 13(1), 1-13.

Houdé, O. (2008). Les 100 mots de la psychologie. Paris: Presses Universitaires de France.

Juntunen, C. L., & Wettersten, K. B. (2006). Work hope: Development and initial validation of a measure. Journal of Counseling Psychology, 53, 94-106.

Kuhn, T. S. (1962, 1970). The structure of scientific revolutions. Chicago: University of Chicago Press.

Lakatos, I. (1970). Falsification and the methodology of scientific research programmers. In I. Lakatos and A. Musgrave (Eds.), Criticism and the growth and the knowledge, 91-195. Cambridge: Cambridge University Press.

Lee, G., & Byun, T. (2012). An explanation for the difficulty of leading conceptual change using a counterintuitive demonstration: The relationship between cognitive conflict and responses. Research in Science Education, 42, 943–965.

Lee, G., Kwon, J., Park, S. S., Kim, J. W., Kwon, H. G., & Park, H. K. (2003).

Development of an instrument for measuring cognitive conflict in secondary‐

level science classes. Journal of research in science teaching, 40(6), 585-603.

Limon, M. (2001). On the cognitive conflict as an instructional strategy for conceptual change: a critical appraisal. Learning and Instruction, 11, 357-380.

Limon, M., & Carretero, M. (1997). Conceptual change and anomalous data: A case study in the domain of natural sciences. European Journal of Psychology of Education, 12(2), 213-230.

MacLeod, C. (1991). Half a century of research on the Stroop effect: An integrative review. Psychological Bulletin, 109(2), 163-203.

Masson, S., Potvin, P., & Riopel, M. (2010a). Brain-based mechanisms underlying conceptual change in electricity Paper presented at the Meeting of the special interest group SIG 22 "Neuroscience and education" of the European Association for Research on learning and Instruction (EARLI), Swiss Federal Institute of Technology, Switzerland, Zurich.

Masson, S., Potvin, P., & Riopel, M. (2010b). Brain-based mechanisms underlying conceptual change in electricity. Frontiers in Neuroscience, Conference Abstract: EARLI SIG22 - Neuroscience and Education. doi:

10.3389/conf.fnins.2010.11.00064

Masson, S., Potvin, P., Riopel, M., & Foisy, L. M. B. (2014). Differences in brain activation between novices and experts in science during a task involving a common misconception in electricity. Mind, Brain, and Education, 8(1), 44-55.

McDermott, D., & Snyder, C. R. (1999). Making hope happen: A workbook for turning possibilities into reality. New Harbinger Publications.

Mercer, C. D., & Mercer, A. R. (1998). Teaching students with learning problems.(5th ed.). Upper Saddle River, New Jersey: Prence-Hall

Nelson, J. K., Lizcano, R. A., Atkins, L., & Dunbar, K. (2007). Conceptual judgments of experts vs. novice chemistry students: an fMRI study. Paper presented at the 48th annual meeting of the psychometric society, Longbeach, California.

Niaz, M. (1995). Cognitive conflict as a teaching strategy in solving chemistry problems:

a dialectic–constructivist perspective. Journal of research in science teaching, 32(9), 959-970.

75

Nussbaum, J., & Novick, S. (1982). Alternative frameworks, conceptual conflict and accommodation: Toward a principled teaching strategy. Instructional science, 11(3), 183-200.

Palmer, D. H., & Flanagan, R. B. (1997). Readiness to change the conception that

“motion‐implies‐force”: A comparison of 12‐year‐old and 16‐year‐old students.

Science Education, 81(3), 317-331.

Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science education, 66(2), 211-227.

Potvin, P. (2013). Proposition for improving the classical models of conceptual change based on neuroeducational evidence: conceptual prevalence. Neuroeducation, 1(2), 16-43.

Potvin, P., Riopel, M., Masson, S., & Fournier, F. (2010). Problem-centered learning vs. teaching-centered learning in science at the secondary level: An analysis of the dynamics of doubt. Journal of Applied Research on Learning, 3, Article 5, 1-24.

Potvin, P., Sauriol, É ., & Riopel, M. (2015). Experimental evidence of the superiority of the prevalence model of conceptual change over the classical models and repetition. Journal of Research in Science Teaching.

Roth, R. M. and Meyersberg, H. A. (1963). The Non-achievement Syndrome.

Personnel and Guidance Journal, 41, 535-40.

Routledge.

Schlaghecken, F., & Martini, P. (2012). Context, not conflict, drives cognitive control.

Journal of Experimental Psychology, 38(2), 272–278.

Schroeder, A. P., Sihm, I., Mørn, B., Thygesen, K., Pedersen, E. B., & Lederballe, O.

(1996). Influence of humoral and neurohormonal factors on cardiovascular hypertrophy in intreated essential hypertensives. American journal of hypertension, 9(3), 207-215.

Smith, C., Snir, J., & Grosslight, L. (1992). Using conceptual models to facilitate conceptual change: The case of weight-density differentiation. Cognition and Instruction, 9(3), 221-283.

Snyder, C. R. (2002). Hope theory: Rainbows in the mind. Journal of Psychological Inquiry, 13, 249-275.

Snyder, C. R. (Ed.). (2000). Handbook of hope: Theory, measures, and applications.

Academic press.

Snyder, C. R., Harris, C., Anderson, J. R., Holleran, S. A., Irving, L. M., Sigmon, S. T., Yoshinobu, L., Gibb, J., Langelle, C., & Harney, P. (1991). The will and the ways: Development and validation of an individual-differences measure of hope.

Journal of Personality and Social Psychology, 60, 570-585.

Snyder, C. R., Lopez, S. J., Shorey, H. S., Rand, K. L., & Feldman, D. B. (2003). Hope theory, measurements, and applications to school psychology.School psychology quarterly, 18(2), 122.

Sympson, S. C. (1999). Validation of the domain specific hope scale: Exploring hope in life domains. (Unpublished Doctoral Dissertation). University of Kansas, Lawrence, Kansas.

Tillema, H. H., & Knol, W. E. (1997). Promoting student teacher through conceptual change or conceptual instruction. Teaching and Teacher Education, 13(6), 579-595.

Treagust, D. F., Duit, R., & Fraser, B. J. (1996). Overview: Research on students’

76

preinstructional conceptions–the driving force for improving teaching and learning in science and mathematics. Improving teaching and learning in science and mathematics, 1-14.

Trumper, R. (1997). A survey of conceptions of energy of Israeli pre-service high school biology teachers. International Journal of Science Education, 19(1), 31-46.

Van Driel, J. H., Verloop, N., & de Vos, W. (1998). Developing science teachers' pedagogical content knowledge. Journal of research in Science Teaching, 35(6), 673-695.

Vygotsky, L. S. (1962). Thought and language. Edited and translated by Eugenia Hanfmann and Gertrude Vakar.

Wandersee, J. H., Mintzes, J. J., & Novak, J. D. (1994). Research on alternative conceptions in science. Handbook of research on science teaching and learning, 177, 210.

.

77

附錄

附錄一:講述法教材_教師版

教材一:重力、浮力與燒杯提供的支撐力之力平衡

1. 拿紙團在空中放開,紙團掉到地上。這是因為地心引力拉紙團(也就是紙團的重量),所以有重 力往下,紙團往下掉,到碰到地板時,地板提供一個向上的力支撐紙團。紙團受到向下的重力和 地板提供的向上的支撐力的作用,此兩力大小相同,方向相反,所以紙團在地板靜止不動。

2. 拿空燒杯,將木塊放入燒杯中,木塊靜止在燒杯底部。地心引力作用在木塊上(也就是木塊的重 量),也就是所受重力往下,但是木塊卻沒有往下掉,這是因為燒杯提供了一個向上的力支撐木 塊。向下的重力和燒杯提供的向上的支撐力大小相同,方向相反。所以木塊在燒杯底部靜止不動。

3. 燒杯裝水,放木塊,木塊浮在水面。一樣有地心引力拉木塊,即木塊所受重力向下,但這次木塊 沒有跟燒杯接觸,所以沒有燒杯提供向上的支撐力,而是木塊浸入水中,排開水時,水提供一個 向上的浮力。木塊所受向下的重力和向上的浮力大小相同,方向相反,所以木塊浮在水面靜止不 動。

4. 同 2,改用鋁塊。

5. 燒杯裝水,放鋁塊,鋁塊沉在水底。一樣有地心引力拉鋁塊,因此鋁塊所受重力向下,水仍然提 供向上的浮力,鋁塊接觸到燒杯,燒杯也提供向上的支撐力。在此狀況中,方向向下的力有重力,

方向向上的力有水浮力和燒杯支撐力,向上的浮力和向上的支撐力加起來會等於向下的重力,向 上的力總和和向下的力總和相等,所以鋁塊沉在水底靜止不動。

6. 所以浮力的大小和什麼有關聯呢?要如何判斷物體在液體中是沉是浮?

78

教材二:物體所受浮力與其沒入液體體積的關係

一、物體的體積、質量、密度的意義:

1.體積:物體所佔的空間。

2.質量:物體本身所含的量。

3.密度:每單位體積含的質量。密度=質量÷體積(D=M÷V)。

二、浮力與體積

我們將彈簧秤勾住一個金屬物體,慢慢的放入水中,觀察金屬物體在水面下的體積和彈簧秤上的 數值,如圖所示。

量測到的結果如下表所示:

由實驗數據可以發現,當金屬物體在空氣中時,金屬物體重量為 200 克重,當金屬物體沒入水中

由實驗數據可以發現,當金屬物體在空氣中時,金屬物體重量為 200 克重,當金屬物體沒入水中

相關文件