• 沒有找到結果。

五、 結論與建議

5.2 建議

溫度為650℃接近因此差距較小,而等速加溫模式之脫附溫度為 950℃

差距較大。

6. 隨著補充率增加石灰石對二氧化碳的吸附量也相對增加補充新鮮的石 灰石能將吸附量增加比預期的還高

7. 以 C 業者的石灰石進行反覆 10 次吸脫附實驗的結果和 Grasa et al.(2006)

[15]等以 Piaseck 的石灰石進行 80 次的吸脫附實驗的結果相似,因 此本實驗所使用本地的石灰石和Piaseck 的石灰石有極為相似的性質。

而且本次實驗結果跟該文獻中Xn 的計算公式(13)進行作圖比對,發現 線形十分相似,故將來國內的石灰石可利用該公式進行相關研究工 作,以幫助國內使用本地的石灰石發展二氧化碳分離技術。

5.2 建議

1. 石灰石的重量會隨著二氧化碳的吸脫附而有所改變,相對著體積也會 跟著改變,若使用固定床型式的反應器進行二氧化碳的吸脫附容易導 致本體的破裂,因此建議使用流體化床型式的反應器。

2. 將來以石灰石為吸附劑在高溫下分離二氧化碳時,在設計吸附塔時若 考量可再生次數時,應選擇等溫吸脫附模式,但若考量縮短欲處理物 的停留時間以獲致較佳之反應器設計時,應考慮選擇等速加溫吸脫附 模式。

3. 由本研究的各項數據來看,CaO 相較於其他之吸附劑(例如在 1 大 氣壓 75℃時 MCM-41-PEI-75:133mg CO2/g sorbent〔53〕,在 1 大 氣壓 25℃時活性炭:110mg CO2/g sorbent、zeolite 4A:135mg CO2/g sorbent、zeolite 13X:160mg CO2/g sorbent〔54〕) ,有十分大的 CO2 吸附量(理論值:786mg CO2/g sorbent),唯 CaO 的再生率表現效果 隨著循環次數的增加不甚理想,如何改善其再生率除了補充新鮮 的石灰石外,石灰石的改質也是一個可行的方法。

參考文獻

1. 行 政 院 國 家 永 續 發 展 委 員 會 全 球 資 訊 網 , http://ivy2.epa.gov.tw/NSDN/index.asp,2006。

2. S. Ueno, D. D. Jayaseelan, J. She, N. Kondo, T. Ohji and S. Kanzaki (2004) “Carbon Dioxide Absorption Mechanisms of Sodium Added to Calcium Oxide at High Temperatures” Ceramics International, vol.30, 1031-1034.

3. M. V. Iyer, H. Gupta, B. B. Sakadjian and L.-S. Fan (2004)

“Multicyclic Study on the Simultaneous Carbonation and Sulfation of High-Reactivity CaO” Ind. Eng. Chem. Res., vol.43, 3939-3947.

4. 工研院 (2005) “我國未來能源規劃-能源工程模型之應用與維護”,

經濟部能源局委辦計劃期末報告。

5. 行政院環保署全球資訊網,http://www.epa.gov.tw/main/index.asp,

2005。

6. 經濟部工業局全球資訊網,http://www.moea.gov.tw/,2005。

7. IPCC 第三工作組 (2005) “二氧化碳捕獲和封存”,政府間氣候變 化專門委員會研究計畫,ISBN92-9169-519-X。

8. D. Aaron and C. Tsouris (2005) “Separation of CO2 from Flue Gas:A Review” Separation Science and Teclinology, vol.40, 321-348.

9. G. P. Knowles, J. V. Graham, S. W. Delaney and A. L. Chaffee (2005)

“Aminoproyl-Functionalized Mesoporous Silicas as CO2 Adsorbents”

Fuel Processing Technology, vol.86, 1435-1448.

10. S. Kim, J. Ida, V. V. Guliants and J. Y. S. Lin (2005) “Tailoring Pore Properties of MCM-48 Silica for Selective Adsorption of CO2” J. Phys.

Chem., vol.109, 6287-6293.

11. F. Zheng, D. N. Tran, B. J. Busche, G. E. Fryxell, R. S. Addleman, T. S.

Zemanian and C. L. Aardahl (2005) “Ethylendiamine-Modified SBA-14 as Regenerable CO2 Sorbent” Ind. Eng. Chem. Res., vol.44, 3099-3105.

12. J. Wuhrer, Chem. lng. Tech., vol.30, 19, 1958.

13. 潘守保 (1998),以混合醇胺溶液(MEA+AMP)吸收二氧化碳溫室效 應氣體之可行性研究,國立交通大學環境工程研究所碩士論文。

14. 經濟部礦務局,http://www.mine.gov.tw/,2006。

15. G. S. Grasa and J. C. Abanades (2006) “CO2 Capture Capacity of CaO in Long Series of Carbonation/Calcination Cycles” Ind. Eng. Chem.

Res., vol.45, 8846-8851.

16. J. C. Abanades, E. S. Rubin and E. J. Anthony (2004) “Sorbent Cost and Performance in CO2 Capture Systems” Ind. Eng. Chem. Res., vol.43, 3462-3466.

17. R. W. Hughes, D. Lu, E. J. Anthony and Y. Wu (2004) “Improved Long-Term Conversion of Limestone-Derived Sorbents for In Situ Capture of CO2 in a Fluidized Bed Combustor” Ind. Eng. Chem. Res., vol.43, 5529-5539.

18. B. R. Stanmore and P. Gilot (2005) “Review—Calcination and Carbonation of Limestone During Thermal Cycling for CO2

Sequestration” Fuel Processing Technology, vol.86 1707– 1743.

19. Carbon Sequesration Technology Roadmap and Program Plan-2004, NETL/DOE, April, 2004.

into Aqueous Solutions of Methyldiethanolamine and Activated Methyldiethanolamine from a Gas Mixture in a Hollow Fiber Contactor” Ind. Eng. Chem. Res., vol.44, no.24, 9230 -9238.

21. C. Chen (2003) A Technical and Economic Assessment of Selexol-based CO2 Capture Technology for IGCC Power Plants, Union Carbide Corporation, USA.

22. H. Schlichting (2003) Up-Date on Lurgi Syngas Technologies, Technologies Gasification Technologies, San Francisco, USA.

23. D. Dortmundt and K. Doshi (1999) Recent Developments in CO2

Removal Membrane Technology, UOP, USA.

24. T. Novak (2005) “Terrestrial Fauna From Cavities in Northern and Central Slovenia, and a Review of Systematically Ecologically Investigated Cavities” Acta carsologica, vol.34/1, no.10, 169-210.

25. R. M. Bowler, S. Gysens, C. Hartney, L. Ngo, S. S. Rauch and J.

Midtling (2002) “Increased Medication Use in a Community Environmentally Exposed to Chemicals” Industrial Health, vol.40, 335-344.

26. R. B. Fedich, D. S. McCaffrey Jr. and J. F. Stanley (2005) Advanced Gas Treating to Enhance Producing and Refining Projects using FLEXSORB@ SE Solvents, ExxonMobil Research and Engineering Company, USA。

27. V. K. Bali and A. K. Maheshwari (2005) A Case Study of CO2 Removal System Problems/Failures in an Ammonia Plant, IFFCO Aonla Unit, India。

28. UOP Homepage, http://www.uop.com/gasprocessing/6010.html, 2005.

29. H. Herzog (1999) An Introduction to CO2 Separation and Capture Technologies, MIT Energy Laboratory, August, USA。

30. C. Higman and G. Grünfelder (1990), “Clean Power Generation From Heavy Residues The LURGI SGP-IGCC Concept”, presented at the Conference “Power Generation and the Environment” Institution of Mechanical Engineers, November, London, England。

31. P. J. Teevens and P. Eng. (2004) Electrochemical Noise - A Potent Weapon in the Battle Against Sour Gas Plant Corrosion, AEC West Ltd., Canada.

32. 李政弘(2001)“溫室效應氣體減量技術推廣與輔導計畫”,經濟部 工業局委託計畫期末報告。

33. Membrana Homepage, http://www.membrana.com/index_neu.phtml, 2005.

34. DOW Homepage, http://www.dow.com/, 2005.

35. 日 本 產 業 技 術 綜 合 研 究 所 網 頁 , http://www.aist.go.jp/index_en.html,2006。

36. 美國喬治亞理工學院網頁,http://www.gatech.edu/,2005。

37. IEA GHG program. Link, http://www.ieagreen.org.uk/index.html, 2005。

41. 三 菱 重 工 業 株 式 會 社 網 頁 , http://www.mhi.co.jp/indexe.html , 2007。

42. New Energy and Industrial Technology Development Organization (2002) “有關全球變暖對策技術開發的調查/CO2分離回收技術的調 查研究”(原文為:地球温暖化対策技術開発に関する調査/CO2 の分離・回収技術に関する調査研究);http://www.nedo.go.jp/。

43. The Energetics of Carbon Dioxide Capture in Power Plants, 2004, 168-169.

44. H. Gupta and L. Fan (2002) “Carbonation-Calcination Cycle Using High Reactivity Calcium Oxide for Carbon Dioxide Separation from Flue Gas” Ind. Eng. Chem. Res., vol.41, 4035-4042.

45. Q. Chunzhen, X. Yunhan, T. Wendong and Y. Shaojun (2006)

“Repetitive Calcination-Carbonation Capability of Ca-based CO2

Absorbent” Journal of Chemical Industry and Engineering (China), vol.57, no.12, 2953-2958.

46. D. Alvarez and J. C. Abanades (2005) “Determination of the Critical Product Layer Thickness in the Reaction of CaO with CO2” Ind. Eng.

Chem. Res., vol.44, 5608-5615.

47. J. C. Abanades (2002) “The Maximum Capture Efficiency of CO2

Using a Carbonation/Calcination Cycle of CaO/CaCO3” Chemical Engineering Journal, vol.90, 303–306.

48. J. C. Abanades and D. Alvarez (2003) “Conversion Limits in the Reaction of CO2 with Lime” Energy Fuels, vol.17, 308– 315.

49. D. Mess, A. F. Sarofim and J. P. Longwell (1999) “Product Layer Diffusion During the Reaction of Calcium Oxide with Carbon Dioxide” Energy and Fuels, vol.13, 999-1005.

50. C. Salvador, E. J. Anthony and J. C. Abanades (2003) “Enhancement of CaO for CO2 Capture in an FBC Environment” Chemical Engineering Journal, vol.96, 187-195.

51. E. P. Reddy and P. G. Smirniotis (2004) “High-Temperature Sorbent for CO2 Made of Alkali Metals Doped on CaO Supports” J. Phys.

Chem., vol.108, 7794-7800.

52. H. Lu, E. P. Reddy and P. G. Smirniotis (2006) “Calcium Oxide Based Sorbents for Capture of Carbon Dioxide at High Temperatured” Ind.

Eng. Chem. Res., vol.45, 3944-3949.

53. X. Xu, C. Song, J. M. Andresen, B. G. Miller and A. W. Scaroni (2002)

“Novel Polyethylenimine-Modified Mesoporous Molecular Sieve of MCM-41 Type as High-Capacity Adsorbent for CO2 Capture” Energy

& Fuels, vol.16, 1463-1469.

54. R. V. Siriwardane, M. S. Shen, E. P. Fisher and J. A. Poston (2001)

“Adsorption of CO2 on Molecular Sieves and Activated Carbon”

Energy Fuels, vol.15, 279-284.

相關文件