• 沒有找到結果。

第五章 結論與建議

第二節 建議

本研究根據實驗教學與研究結果所發現之問題,提出相關建議以供國中化學 教育及未來研究之參考。

壹、化學反應課程教學之建議

本研究針對以擴增實境實驗遊戲環境進行化學反應課程教學之建議包含:(1) 應用引導式探索策略輔助化學反應課程相關概念之教學;(2)增加教學時間,增進 學習者化學反應課程相關概念之建構;(3)結合現場學習環境。各建議分述如下:

一、應用 5E 引導式探索策略輔助化學反應課程相關概念之教學

本研究應證了以 5E 引導式探索策略在擴增實境實驗遊戲的學習環境下學習 化學反應課程之可行性,教師可以依 5E 學習環之模式訂定化學反應課程相關概 念學習活動。由於化學反應課程概念較為抽象,每個學習者對於內容瞭解程度各 不相同,所以若以引導的方式讓學習者進行探索,學習者可以根據自己感到疑惑 的部分加以去求證,最後得出結果進而建構出屬於自己的知識,將有助於學習者 在化學反應課程相關概念的學習成效表現。

二、增加教學時間,增進學習者化學反應課程相關概念之建構

本研究之實驗教學時間為四堂課,一堂課 45 分鐘,扣除測驗與問卷的填寫,

實際的實驗教學活動不足 180 分鐘。研究結果顯示在短暫的學習活動中,擴增實 境實驗遊戲能有效提升學習者的學習成效與學習動機。然而,為了讓學習者可以 達到更加精熟的狀態,建議未來在實驗教學的時間上能夠延長,讓學習者可以有 更充裕的時間在擴增實境學習環境進行探索,讓學習者更多時間進入深層思考以 幫助他們建構知識。

三、結合現場學習環境

本研究透過一張包含數個區域的地圖來呈現擴增實境學習環境,雖然場景內 容是依各地圖區塊的內容加以建置,但若能將地圖分成數張張貼於教室周圍,再 依該遊戲場景進行現實環境的簡易佈置,例如:在遊戲的礦坑場景會取得鐵粉之 任務道具,於現實環境中可擺放鐵粉。讓學習者可以多了觸覺感官的使用,這能 夠幫助學習者對學習環境的感受不只是侷限於平板設備畫面上的呈現,更能使學 習者融入於遊戲場景中,以達到身入其境的感受,藉此提高學習者的學習成效以 及動機。

貳、未來研究方向之建議

本研究針對未來研究方向之建議,包含:(1)研究對象之延伸;(2)其他科學內 容之應用;(3)其他教學資源之應用。各建議分述如下:

一、研究對象之延伸

本研究因為人力、物力及時間上的限制,本研究僅以新北市某高中之附屬國 中部八年級學習者作為研究樣本進行實驗教學。建議未來可以增加樣本數,並將 研究對象延伸至較高階段的年齡層,例如高中、大學等,將有助於了解其他不同 年齡層學習者的學習情形,讓教學設計者能針對不同階段之學習者設計適切的探 索式學習活動。

二、其他科學內容之應用

本研究結果證明,探索式的擴增實境實驗遊戲可以促進學習者在化學方面的 學習者,而且能夠提升學習者的學習動機,然而,在科學領域中還包含了自然、

物理部分,其中有些內容也是有相關實驗可以進行操作。所以建議未來也可設計 與這些科學內容相關的探索式擴增實境實驗遊戲,以培養學習者具有良好的科學

素養。

三、其他教學資源之應用

本研究因為時間與空間上的考量,本研究以平板設備進行擴增實境實驗遊戲。

未來建議在擴增實境實驗的部分可以結合投影工具,以投影的方式呈現擴增實境,

並將部分的實驗器材以真實器材進行擴增實境實驗,讓學習者更能有實際操作的 感覺。

參考文獻

參考文獻

鐘建坪(2010)。引導式建模探究教學架構初探。科學教育月刊,328,2-18。

英文部分

Açışlı, A., Yalçın, S. A., & Turgut, Ü . (2011). Effects of the 5E learning model on students’ academic achievements in movement and force issues. Procedia - Social and Behavioral Sciences, 15, 2459-2462.

Alcañiz, M., Contero, M., Pérez-López, D. C., & Ortega, M. (2010). Augmented reality technology for education. New Achievements in Technology Education and Development, 247-256.

Alem, L., Furio, D., Juan, C., & Ashworth, P. (2011). Effect of collaboration and competition in an Augmented Reality mobile game. In Recent Trends of Mobile Collaborative Augmented Reality Systems, 109-116. Springer New York.

Andujar, J. M., Mejias, A., & Marquez, M. A. (2011). Augmented reality for the improvement of remote laboratories: An augmented remote laboratory. Education, IEEE Transactions on, 54(3), 492-500.

Anastassova, M., & Burkhardt, J. M. (2009). Automotive technicians' training as a community-of-practice: Implications for the design of an augmented reality teaching aid. Applied ergonomics, 40(4), 713-721.

Ariyana, Y., & Wuryandari, A. I. (2012). Virtual interaction on augmented reality with nonparametric belief propagation algorithm. Procedia - Social and Behavioral Sciences,67, 590-599

Arslan, H. O., Moseley, C., & Cigdemoglu, C. (2011). Taking attention on environmental issues by an attractive educational game:

Enviropoly. Procedia-Social and Behavioral Sciences, 28, 801-806.

Azuma, R. T. (1997). A survey of augmented reality. Presence-Teleoperators and Virtual Environments, 6(4), 355-385.

Bell, R. L., Smetana, L., & Binns, I. (2005). Simplifying inquiry instruction. The Science Teacher, 72(7), 30-33.

Billinghurst, M. (2002). Augmented reality in education. New Horizons for Learning, 12.

Billinghurst, M., & Dünser, A. (2012). Augmented reality in the classroom.Computer, 45(7), 56-63.

Bogar, Y., Kalender, S., & Sarikaya, M. (2012). The effects of constructive learning method on students’ academic achievement, retention of knowledge, gender and attitudes towards science course in “Matter of Structure and Characteristics”

unit. Procedia-Social and Behavioral Sciences,46, 1766-1770.

Bostrom, R. P., Olfman, L., & Sein, M. K. (1990). The importance of learning style in end-user training. Mis Quarterly, 101-119.

Brown, P. L., & Abell, S. K. (2007). Examining the learning cycle. Science and Children, 44(5), 58-59.

Bybee, R. W., Taylor, J. A., Gardner, A., Van Scotter, P., Powell, J. C., Westbrook, A.,

& Landes, N. (2006). The BSCS 5E instructional model: Origins, effectiveness, and applications. Colorado Springs: BSCS.

Campos, P., & Pessanha, S. (2011). Designing augmented reality tangible interfaces for kindergarten children. In Virtual and mixed reality- New trends, 12-19. Springer Berlin Heidelberg.

Carbonaro, M., Szafron, D., Cutumisu, M., & Schaeffer, J. (2010). Computer-game construction: A gender-neutral attractor to computing science. Computers &

Education, 55(3), 1098-1111.

Carin, A. A. (1993). Teaching modern science (6th ed). New York : Merrill.

Carver Jr, C. A., Howard, R. A., & Lane, W. D. (1999). Enhancing student learning through hypermedia courseware and incorporation of student learning

styles. Education, IEEE Transactions on, 42(1), 33-38.

Chen, R., & Wang, X. (2008). An empirical study on tangible augmented reality learning space for design skill transfer. Tsinghua Science & Technology, 13, 13-18.

Cheng, C. H., & Su, C. H. (2012). A game-based learning system for improving student’s learning effectiveness in system analysis course. Procedia - Social and Behavioral Sciences, 31, 669-675.

Cheok, A. D., Hwee, G. K., Wei, L., Teo, J., Lee, T. S., Farbiz, F., & Ping, L. S. (2004).

Connecting the real world and virtual world through gaming. IFIP International Federation for Information and Communication Technology, 156, 45-50.

Cook, D. A. (2005). Reliability and validity of scores from the index of learning styles. Academic Medicine, 80(10), 97-101.

Demirbas, O. O., & Demirkan, H. (2007). Learning styles of design students and the relationship of academic performance and gender in design education. Learning and Instruction, 17, 345-359.

Demircioglu, G. & Yadigaroglu, M. (2012). The effect of activities based on 5e model on grade 10 students’ understanding of the gas concept. Procedia - Social and Behavioral Sciences, 47, 634-637.

Demircioglu, H., Demircioglu, G. & Calik, M. (2009). Investigating the effectiveness of storylines embedded within a context-based approach: The case for the Periodic Table. Chemistry Education Research and Practice, 10(3), 241-249.

Doolittle, P., & Camp, W. (1999). Constructivism: The career and technical education perspective. Journal of Vocational and Technical Education, 16(1). from http://scholar.lib.vt.edu/ejournals/JvTE/v16n1/doolittle.html.

Dunleavy, M., Dede, C., & Mitchell, R. (2009). Affordances and limitations of immersive participatory augmented reality simulations for teaching and learning.

Journal of Science Education and Technology, 18(1), 7-22.

Echeverría, A., Améstica, M., Gil, F., Nussbaum, M., Barrios, E., & Leclerc, S. (2012).

Exploring different technological platforms for supporting co-located collaborative games in the classroom. Computers in Human Behavior, 28(4), 1170-1177.

Enyedy, N., Danish, J. A., Delacruz, G., & Kumar, M. (2012). Learning physics through play in an augmented reality environment. International Journal of Computer-Supported Collaborative Learning, 7(3), 347-378.

Eow, Y. L., & Baki, R. (2010). Computer games development and appreciative learning approach in enhancing students’ creative perception. Computers &

Education, 54(1), 146-161.

Fazelian, P., & Soraghi, S. (2010). The effect of 5E instructional design model on learning and retention of sciences for middle class students. Procedia-Social and Behavioral Sciences, 5, 140-143.

Felder, R. M. (1996). Matters of style. ASEE Prism, 6(4), 18-23.

Felder, R. M., & Spurlin, J. (2005). Applications, reliability and validity of the index of learning styles. International Journal on Engineering Education, 21 (1), 103-112.

Gillies, R. M., Nichols, K., Burgh, G., & Haynes, M. (2012). The effects of two strategic and meta-cognitive questioning approaches on children's explanatory behaviour, problem-solving, and learning during cooperative, inquiry-based science. International Journal of Educational Research, 53, 93-106.

Gorghiu, L. M., Gorghiu, G., Dumitrescu, C., Olteam, R. L., Bîzoib, M., & Suducb, A.

M. (2010). Implementing virtual experiments in sciences education - challenges and experiences achieved in the frame of VccSSe comenius 2.1. project. Procedia - Social and Behavioral Sciences,2(2), 2952-2956.

Graf, S., & Lin, T. (2008). The relationship between learning styles and cognitive traits–Getting additional information for improving student modelling. Computers in Human Behavior, 24(2), 122-137.

Guazzaroni, G. (2013). Emotional mapping of the archaeologist game. Computers in Human Behavior, 29(2), 335-344.

Helm, P. (1980). Misconceptions in physics amongst South Africa students. Physics Education, 15(2), 92-97.

Herron, J. D. (1975). Piaget for chemists. Journal of Chemical Education,52(3), 146-150.

Hofstein, A., & Lunetta, V. N. (1982). The role of the laboratory in science teaching:

Neglected aspects of research. Review of Educational Research, 52(2), 201-217.

Hsiao, K. F., & Rashvand, H. F. (2011). Integrating body language movements in augmented reality learning environment. Human-centric Computing and Information Sciences, 1(1), 1-10.

Karal, H., & Reisoglu, I. (2009). Haptic's suitability to constructivist learning environment: aspects of teachers and teacher candidates. Procedia-Social and Behavioral Sciences, 1(1), 1255-1263.

Kaufmann, H., & Schmalstieg, D. (2003). Mathematics and geometry education with collaborative augmented reality. Computers & Graphics, 27(3), 339-345.

Ke, F. (2008). Alternative goal structures for computer game-based learning.

International Journal of Computer-Supported Collaborative Learning, 3(4), 429-445.

Kesim, M., & Ozarslan, Y. (2012). Augmented reality in education: Current technologies and the potential for education. Procedia-Social and Behavioral Sciences, 47, 297-302.

Kim, S., & Chang, M. (2010). Computer games for the math achievement of diverse students. Educational Technology & Society, 13(3), 224-232.

Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development . Englewood Cliffs, NJ: Prentice-Hall.

Kolomuc, A., Ozmen, H., Metin, M., & Acisli, S. (2012). The effect of animation enhanced worksheets prepared based on 5E model for the grade 9 students on alternative conceptions of physical and chemical changes. Procedia - Social and Behavioral Sciences, 48, 1761-1765.

Lati, W., Supasorn, S., & Promarak, V. (2012). Enhancement of learning achievement and integrated science process skills using science inquiry learning activities of chemical reaction rates. Procedia-Social and Behavioral Sciences, 46, 4471-4475.

Lazonder, A. W., Hagemans, M. G., & de Jong, T. (2010). Offering and discovering domain information in simulation-based inquiry learning. Learning and Instruction, 20(6), 511-520.

Lazonder, A. W., Wilhelm, P., & Hagemans, M. G. (2008). The influence of domain knowledge on strategy use during simulation-based inquiry learning. Learning and Instruction, 18(6), 580-592.

Lee, K. (2012). Augmented reality in education and training. TechTrends, 56(2), 13-21.

Liarokapis, F., & De Freitas, S. (2010). A case study of augmented reality serious games. Looking Toward the Future of Technology-Enhanced Education:

Ubiquitous Learning and the Digital Native. IGI Global, 178-191.

Lowrie, T., & Jorgensen, R. (2011). Gender differences in students’ mathematics game playing. Computers & Education, 57(4), 2244-2248.

Martín-Gutiérrez, J., Luís Saorín, J., Contero, M., Alcañiz, M., Pérez-López, D. C., &

Ortega, M. (2010). Design and validation of an augmented book for spatial abilities development in engineering students. Computers & Graphics, 34(1), 77-91.

Matsutomo, S., Miyauchi, T., Noguchi, S., & Yamashita, H. (2012). Real-time visualization system of magnetic field utilizing augmented reality technology for education. IEEE Transactions on Magnetics, 48(2), 531-534.

Miller, L. M., Chang, C. I., Wang, S., Beier, M. E., & Klisch, Y. (2011). Learning and motivational impacts of a multimedia science game. Computers & Education, 57(1), 1425-1433.

Mischkowski, R. A., Zinser, M. J., Kübler, A. C., Krug, B., Seifert, U., & Zöller, J. E.

(2006). Application of an augmented reality tool for maxillary positioning in orthognathic surgery–a feasibility study. Journal of Cranio-Maxillofacial Surgery,34(8), 478-483.

Morrison, A., Mulloni, A., Lemmelä, S., Oulasvirta, A., Jacucci, G., Peltonen, P., Schmalstieg, D., & Regenbrecht, H. (2011). Collaborative use of mobile augmented reality with paper maps. Computers & Graphics, 35(4), 789-799.

National Research Council. (2000). Inquiry and the National Science Education Standards: A Guide for Teaching and Learning, National Academy Press, Washington DC.

Nikou, C., Digioia III, A. M., Blackwell, M., Jaramaz, B., & Kanade, T. (2000).

Augmented reality imaging technology for orthopaedic surgery. Operative Techniques in Orthopaedics, 10(1), 82-86.

Ö zeke, S. (2009). Connections between the constructivist-based models for teaching science and music. Procedia-Social and Behavioral Sciences, 1(1), 1068-1072.

Pivec, M. & Dziabenko, O. (2004). Game-based learning in universities and lifelong learning: “UniGame: Social skills and knowledge training” game concept.

Journal of Universal Computer Science, 10(1), 14-263.

Prensky, M. (2007). Digital game-based learning. New York: McGraw-Hill.

Raes, A., & Schellens, T. (2012). The impact of web-based inquiry in secondary science education on students’ motivation for science learning. Procedia-Social and Behavioral Sciences, 69, 1332-1339.

Rastegarpour, H., & Marashi, P. (2011). The effect of card games and computer games on learning of chemistry concepts. Procedia-Social and Behavioral Sciences, 31, 597-601.

Salmi, H., Kaasinen, A., & Kallunki, V. (2012). Towards an open learning environment via augmented reality (AR): Visualising the invisible in science centres and schools for teacher education. Procedia-Social and Behavioral Sciences, 45, 284-295.

Sánchez, J., & Olivares, R. (2011). Problem solving and collaboration using mobile serious games. Computers & Education, 57(3), 1943-1952.

Santana-Mancilla, P. C., Garc’a-Ruiz, M. A., Acosta-Diaz, R., & Juárez, C. U. (2012).

Service oriented architecture to support mexican secondary education through mobile augmented reality. Procedia Computer Science, 10, 721-727.

Sesen, B. A., & Tarhan, L. (2013). Inquiry-based laboratory activities in electrochemistry: High school students’ achievements and attitudes. Research in Science Education, 43(1), 413-435.

Şimşek, P., & Kabapinar, F. (2010). The effects of inquiry-based learning on elementary students’ conceptual understanding of matter, scientific process skills and science attitudes. Procedia - Social and Behavioral Sciences, 2(2), 1190-1194.

Sokan, A., Inagawa, N., Nishijo, K., Shinagawa, N., Egi, H., & Fujinami, K. (2010).

Alerting accidents with ambiguity: a tangible tabletop application for safe and independent chemistry experiments. In Ubiquitous intelligence and computing, 151-166. Springer Berlin Heidelberg.

Squire, K. (2003). Video games in education. International Journal of Intelligent Simulations and Gaming, 2(1), 49-62.

Supasorn, S. (2012). Enhancing undergraduates’ conceptual understanding of organic acid-base-neutral extraction using inquiry-based experiments. Procedia - Social and Behavioral Science, 46, 4643-4650.

Taber, K. S. (2006). Beyond constructivism: The progressive research programme into learning science. Studies in Science Education, 42, 125-184.

Tatli, Z., & Ayas, A. (2010). Virtual laboratory applications in chemistry education.

Social and Behavioral Sciences, 9, 938-942.

Tulbure, C. (2011). Do different learning styles require differentiated teaching strategies? Procedia-Social and Behavioral Sciences, 11, 155-159.

Tüzün, H., Yılmaz-Soylu, M., Karakuş, T., İnal, Y., & Kızılkaya, G. (2009). The effects of computer games on primary school students’ achievement and motivation in geography learning. Computers & Education, 52(1), 68-77.

Uzun, N. (2012). A sample of active learning application in science education: The thema “Cell” with educational games. Procedia-Social and Behavioral Sciences, 46, 2932-2936.

Uzun, A., Goktalay, S. B., Öncü, S., & Şentürk, A. (2012). Analyzing learning styles of students to improve educational practices for computer literacy course. Procedia-Social and Behavioral Sciences, 46, 4125-4129.

Valente, M. O., Fonseca, J., & Conboy, J. (2011). Inquiry science teaching in Portugal and some other countries as measured by PISA 2006. Procedia-Social and

Behavioral Sciences, 12, 255-262.

Vita, G. D. (2001). Learning styles, culture and inclusive instruction in the multicultural classroom: A business and management perspective. Innovations in Education and Teaching International, 38(2), 165-174.

Von Der PüTten, A. M., Klatt, J., Broeke, S. T., McCall, R., Krämer, N. C., Wetzel, R., Blum, L., Oppermann, L., & Klatt, J. (2012). Subjective and behavioral presence measurement and interactivity in the collaborative augmented reality game TimeWarp. Interacting with Computers. 24(4), 317-325.

Wrzesien, M., & Alcañiz Raya, M. (2010). Learning in serious virtual worlds:

Evaluation of learning effectiveness and appeal to students in the E-Junior project. Computers & Education, 55(1), 178-187.

Wu, H. L., & Pedersen, S. (2011). Integrating computer and teacher based scaffolds in science inquiry. Computers & Education, 57(4), 2352-2363.

Xie, K., & Bradshaw, A. C. (2008). Using question prompts to support ill-structured problem solving in online peer collaborations. International Journal of Technology in Teaching and Learning, 4(2), 148-165.

Yager, R. E (1993). Science technology society as reform. School Science and Mathematics, 93(3), 145-151.

Yim, H. B., & Seong, P. H. (2010). Heuristic guidelines and experimental evaluation of effective augmented-reality based instructions for maintenance in nuclear power plants. Nuclear Engineering and Design, 240(12), 4096-4102.

Zhou, Z., Cheok, A. D., & Pan, J. (2004). 3D story cube: an interactive tangible user interface for storytelling with 3D graphics and audio. Personal and Ubiquitous Computing, 8(5), 374-376.

Zywno, M. S. (2003). A contribution to validation of score meaning for Felder-Soloman’s index of learning styles. In Proceedings of the 2003 American Society for Engineering Education annual conference & exposition, 119, 1-5.

附 錄

附錄一 化學反應實驗學習單

【學習目標】

觀察氯化鈣溶液和碳酸鈉溶液作用前後的質量關係。

【想想看】

1.當氯化鈣溶液和碳酸鈉溶液混合產生碳酸鈣和氯化鈉,此反應前的質量

1.當氯化鈣溶液和碳酸鈉溶液混合產生碳酸鈣和氯化鈉,此反應前的質量