• 沒有找到結果。

第五章 結論與建議

5.2 建議

本研究受限於時間之限制,對於非線性效應所產生之諸多影響,

僅能反應出波速之改變,對於其它部份並無深入之探討。建議未來可 以考量高階解之推導,對非線性效應之影響將會有更精確的描述,同 時將結果與實際實驗相比較,以期能夠更加精確地描述造波過程之水 面變化。

參考文獻

1. 張志華 (1997) 「孤立波與結構物在黏性流體中互制作用之研 究」,國立成功大學水利及海洋工程研究所博士論文。

2. 郭一羽 (2001) 「海岸工程學」,文山書局。

3. 李自強 (2004) 「孤立波造波之研究」,國立成功大學水利及海洋 工程研究所碩士論文。

4. Biesel, F. and F. Suquet (1951) “Les appareils générateurs de houle en laboratoire,” La Huille Blanche, Vol. 6, No. 2, pp. 4-5.

5. Das, M. M. and R. L. Wiegel (1972) “Waves generated by horizontal motion of a wall,” Journal of Waterways, Port, Coastal and Ocean, ASCE, Vol. 98, pp. 49-65.

6. Dean, R. G. and R. A. Dalrymple (1991) Water wave mechanics for

engineers and scientists, World Scientific.

7. Dong, C. M. and Huang C. J. (2004) “Generation and propagation of water waves in a two-dimensional numerical viscous wave flume,”

Journal of Waterway, Port, Coastal and Ocean Engineering, Vol. 130,

pp. 143-153.

8. Erdélyi, A. (1953) Higher transcendental functions, Vol. I, Dover Publications.

9. Exton, H. (1978) Handbook of hypergeometric integrals: Theory,

applications, tables computer programs, Halsted Press.

10. Fontanet, P. (1961) “Théorie de la génération de la houle cylindrique par un batteur plan,” La Houille Blanche, Vol. 16, pp. 3-31.

11. Goring, D. and F. Raichlen (1980) “The generation of long waves in the laboratory,” Proceedings of the 17th Coastal Engineering

Conference, ASCE, Vol. 1, pp. 763-783.

12. Hammack, J. L. and H. Segur (1974) “The Korteweg-de Vries

Journal of Fluid Mechanics, Vol. 65, pp. 289-314.

13. Havelock, T. H. (1929) “Forced surface wave on water,” Philosophical

Magazine, Series 7, Vol. 8, pp. 569-576.

14. Hedges, T. S. (1976) “An empirical modification to linear wave theory,” Proceedings Institute of Civil Engineering, Vol. 61, pp.

575-579.

15. Hedges, T. S. (1987) “An approximate model for nonlinear dispersion in monochromatic wave propagation models,” Coastal Engineering, Vol. 13, pp. 87-88.

16. Huang, C. J., E. C. Zhang and J. F. Lee (1998) “Numerical simulation of nonlinear viscous wavefields generated by a piston-type wavemaker,” Journal of Engineering Mechanics, Vol. 124, pp.

1110-1120.

17. Hudspeth, R. T. and M. C. Chen (1981) “Design curves for hinged wavemakers: A comparison of theory and experiment,” Journal of

Hydraulics Division, ASCE, Vol. 107, pp. 553-574.

18. Hudspeth, R. T. and W. Sulisz (1991) “Stokes drift in two-dimensional wave flumes,” Journal of Fluid Mechanics, Vol. 230, pp. 209-229.

19. Hughes, S. A. (1993) Physical models and laboratory techniques in

coastal engineering, World Scientific.

20. Hyun, J. M. (1976) “Theory for hinged wavemakers of finite draft in water of constant depth,” Journal of Hydronautics, Vol.10, pp. 2-7.

21. Joo, S. W., W. W. Schultz and A. F. Messiter (1990) “An analysis of the initial-value wavemaker problem,” Journal of Fluid Mechanics, Vol. 214, pp. 161-183.

22. Katell, G. and B. Eric (2002) “Accuracy of solitary wave generation by a piston wavemaker,” Journal of Hydraulic Research, Vol. 40, pp.

321-331.

23. Kennard, E. H. (1949) “Generation of surface waves by a moving

partition,” Quarterly of applied mathematics, Vol. 7, pp. 303-312.

24. Keulegan, G. H. (1948) “Gradual damping of solitary waves,” J. Res.

Natl. Bureau of Standards, Vol. 40, p. 487-498.

25. Kirby, J. T. and R. A. Dalrymple (1986) “An approximate model for nonlinear dispersion in monochromatic wave propagation models,”

Coastal Engineering, Vol. 9, pp. 545-561.

26. Kirby, J. T. and R. A. Dalrymple (1987) “An approximate model for nonlinear dispersion in monochromatic wave propagation models,”

Coastal Engineering, Vol. 11, pp. 89-92.

27. Lee, J. F., J. R. Kuo and C. P. Lee (1989) “Transient wavemaker theory,” Journal of Hydraulic Research, Vol. 27, pp. 651-663.

28. Li, R. J. and J. F. Tao (2004) “Analysis of wave nonlinear Dispersion Relations,” China Ocean Engineering, Vol. 19, No. 1, pp. 167-174.

29. Madsen, O. S. (1970) “Waves generated by a piston-type wavemaker,”

Proceedings of the 12th Coastal Engineering Conference, ASCE, pp.

587-607.

30. Moraes, C. C., F. S. Ramos and M. M. Carvalho (1972) “Waves induced by Nonpermanent paddle movements,” Proceedings of the

13th Coastal Engineering Conference, ASCE, pp. 707-722.

31. Raichlen, F. (1970) “Tsunamis: some laboratory and field observations,” Proceedings of the 12th Coastal Engineering

Conference, ASCE, Vol. 3, pp.2103-2122.

32. Russel, J. S. (1845) “Report on waves,” Proc. 14th Meeting, Brit. Ass.

Adv. Sci., York, pp. 331-390.

33. Seaborn, J. B. (1991) Hypergeometric functions and their applications, Springer-Verlag.

34. Spiegel, M. R. (1999) Schaum’s mathematical handbook of formulas

and tables, McGraw-Hill.

solution for water waves generated in wave flumes,” Journal of Fluids

and Structures, Vol. 7, pp. 253-268.

36. Svendsen, I. A. (2006) Introduction to nearshore hydrodynamics, World Scientific.

37. Woo, S. and L. F. Liu (2004) “Finite-element model for modified Boussinesq equations. I: Model development,” Journal of Waterway,

Port, Coastal and Ocean Engineering, Vol. 130, pp. 1-16.

38. Zhang, H. and H. A. Schäffer (2004) “Waves in numerical and physical wave flumes-a deterministic combination," Proceedings of ICCE 2004, Lisbon, Portugal.

附錄 Hypergeometric Function

differential equation),具有三個正則奇點(regular singular point)於

(

0,1,

)

。若利用級數解析,可假設解的形式為:

為了得到非顯性解(nontrivial solution),a0之值必不為零。若考 慮s=0的情況,則(A-6)式可改寫為:

0

(A-11)式一般稱為超幾何級數(hypergeometric series)。若利 用 Pochammer symbol,可將(A-11)式表示為:

( ) ( ) ( )

式中 Pochammer symbol 之定義為:

( )

a n =a

(

a+1

)(

a+2

) (

L a+n−1

)

(A-13) 根據微分方程的理論,只有方程式的奇點才可能是解的奇點,因 此級數(A-11)式在單位圓|z|<1內所表示的解析函數可以解析開拓 到全 z 平面,故開拓後以(A-12)式定義之函數2F1

(

a,b;c;z

)

即為超幾 何函數(hypergeometric function),亦意指 hypergeometric 函數為超 幾何方程的一個級數解析解(另一解為z1c2F1

(

a+1−c,b+1−c;2−c;z

)

)。

Hypergeometric 函數是重要的一類特殊函數,凡具有三個正則奇點的 微分方程之解均可以 hypergeometric 函數表達,許多基本函數亦可 以 hypergeometric 函 數 表 示 , 可 參 考 Erdélyi ( 1953 )。 關 於 hypergeometric 函數之推廣及應用,則可參考 Seaborn(1991)與 Exton(1978)等人的著作。

故應用參數變異法(method of variation of parameters)求取將

(3-10)式代回(2-23)式之特解,設方程式之齊次解為Anp1

( )

tAnp 2

( )

t , 其特解可假設為:

( )

t u

( ) ( )

t A t u

( ) ( )

t A t

Anp = 1 np1 + 2 np2 (A-14) 將(A-14)式代回(2-23)式並整理之,可得到:

( ) ( )

'

( ) ( )

0

( ) ( )

相關文件