• 沒有找到結果。

第五章 結論與建議

第三節 建議與未來研究方向

一、 研究方法之建議

(一) 研究工具

本研究使用的拋體運動概念評量,雖在研究前期已作過效化與修改,但是 在正式施測時可以觀察到還是有學生不清楚題意,事後評量時也發現有些題目未 盡完善。故須不斷改進,確認每個題目的情境與條件清晰無誤導、題目間所測向 度沒有重複。另外本研究之概念涉及動態與複雜關係的概念理解,因為時間限制 大部分概念未能以開放式的問題形式回答,可能因此錯失了許多資訊,故建議測 量相關概念時應多以開放題型作答,並盡可能透過電腦、呈現相仿的圖片、或使 用動畫模擬等方式以求更接近真實的學習狀況。

(二) 模擬動畫與 App

在教學過程中研究者發現學生在使用模擬動畫或 App 進行模擬實驗時,會 有看不清軌跡上打點的情形,因此建議在類似的模擬動畫加入放大縮小功能,以 便更清楚數出拋體的位移。另外在觸控組中,若需在動畫中改變重力加速度則學 生必須一隻手掌握平板電腦另一隻手操控向量,不免會有操作困難或是拿不穩的 情況發生,建議若有類似操作,其操作區域可以設計成拿著平板電腦時可以直接 由空出的拇指操控以求學習更加便利。

二、 教學之建議

(一) POE 教學法使用

POE 的教學法在此單元配合模擬實驗雖然合適,但是因為電腦組的教學場 域必須在電腦教室,因此在討論及分享上都會有移動的困難。故建議可以事先在 分組時視情況改變座位或調整每組人數以利討論。另外在解釋(Explain)階段 教師必須視時提示學生,且在達成教學效果後作適當總結並進入下一循環,此步 驟仰賴教師的教學經驗與技巧,建議事先想好預設的總結語與假想學生可能的回

99

答。

(二) 平板電腦使用

平板電腦在實際教學最大的困難莫過於發放與維護管理,發放與回收均會 耗費一定的時間因此必須先制定固定流程並請學生協助,平板電腦的維護管理則 因為沒有如同電腦一樣的還原卡,建議可以先將 App 放置於數個記憶卡,直接 使用記憶卡安裝 App 比起雲端下載較為迅速有效率。最後在教學時常發生平板 電腦沒電的情形,因此在教學前建議先設置好延長線及充電器維持教學步驟的流 暢不會因沒電而中斷。

三、 未來研究之建議

(一) 研究之實施時間

受限於參與者學校之時程,本研究的教學活動相對短促。然而要讓學生建 立完整的概念架構,應提供充裕的時間與適當的教材,故建議將教學時間作適當 的延長。

(二) 研究之概念內容

本研究之拋體運動概念屬於簡化真實情境、需要將抽象現象視覺化的學習 內容,若要將研究設計推廣至其他概念則也應具備這些特性,且將概念的特性對 應至平板電腦或電腦的特性上。

(三) 延宕測驗

整體而言學習者對於概念的理解有顯著進步,但是此學習成效是否為短暫 記憶、單純硬記、抑或是納入本身認知結構則需要進一步施予延宕測驗以追蹤確 認。

(四) 科技使用

本研究研究之平板電腦特性主要涉及觸控螢幕及內建感測器,若要進一步 研究平板電腦所帶來的便利與潛力,則建議在研究中需納入多點觸控及統整性系 統等其他特性,搭配不同的教學情境以深入探求平板電腦對於概念學習成效的影

100

響。

(五) 視覺動作統整能力

視覺動作統整能力在本研究雖然並未與科技使用交互作用,但若未來研究 加入更多功能,需要更多視覺與動作的刺激,則可能有不同結果。故建議未來研 究配合不同的科技使用特性,選擇是否繼續探討視覺動作統整能力的影響。

(六) 空間能力

空間能力在本研究中顯示之效果視對象而分別支持能力作為補償、能力作 為增強兩種假說,顯示不同的學習情境下,空間能力可能也會有不同的作用機制。

建議未來研究能夠更進一步確認於何種條件下會產生特定的影響效果,進而提供 教學者考慮學習者特性後選擇最佳的教學方法。

101

參考文獻

中文部分

林嘉琦(2006)。應用 POE 教學策略探討學習「溶解」單元概念改變之情形。國 立高雄師範大學科學教育研究所碩士論文(未出版)。

邱維宣(2002)高中學生參與拋體運動專題實驗之研究。彰化師範大學物理學系 碩士論文(未出版)。

康鳳梅(2002)。高工學生空間能力指標建構之研究(1/2)。行政院國家科學委 員會專題研究計畫期中進度報告(NSC91-2516-S-003-007)。台北市:國 立台灣師範大學工業教育學系。

康鳳梅、簡慶郎、鍾怡慧、詹秉鈞與盧永昌(2006)。高工學生空間能力常模及 空間能力資源網建構之研究。師大學報,52(3),1-14。

張春興(1992)教育心理學。台北:東華。

張英鵬(1997)感覺運動訓練方案對國小語文學習障礙兒童感覺動作能力、語文 學習與人際關係之影響。國立臺灣師範大學特術教育研究所碩士論文(未 出版)。

教育部(2013)。教育部人才培育白皮書。台北市:教育部。

許天威(1986)學習障礙者之教育。台北市:五南。

游恆山(譯)(1991)。Robert, M. L.、Rita, W.-N.與 Robert, V. K.著。發展心理學。

台北市:五南圖書。

劉鴻香(1991)拜瑞視覺動作統整發展測驗修訂報告。臺北師院學報,4(1),

487-526。

劉鴻香、陸莉(1999)拜瑞─布坦尼卡視覺─動作統整發展測驗。台北市:心理。

鄭海蓮、陳世玉(2007)標準化空間能力測驗之建模與驗證。教育研究與發展期 刊,3(4),181-216。

102

英文部分

Amelink, C., Scales, G., & Tront, J. G. (2012). Student use of the Tablet PC: Impact on student learning behaviors. Advances in Engineering Education, 3(1).

Anderson, L. W., & Krathwohl, D. R. (2001). A taxonomy for learning, teaching, and assessing: a revision of Bloom's taxonomy of educational objectives. New York, NY: Longman.

Baenninger, M., & Newcombe, N. (1989). The role of experience in spatial test performance: A meta-analysis. Sex Roles, 20(5-6), 327-344. doi:

10.1007/BF00287729

Barnhardt, C., Borsting, E., Deland, P., Pham, N., & Vu, T. (2005). Relationship between visual-motor integration and spatial organization of written language and math. Optometry & Vision Science, 82(2), 138-143.

Başer, M., & Geban, Ö. (2007). Effect of instruction based on conceptual change activities on students’ understanding of static electricity concepts. Research in Science & Technological Education, 25(2), 243-267. doi:

10.1080/02635140701250857

Beery, K. E. (1997). The Beery-Buktenica VMI: Developmental test of visual-motor integration with supplemental developmental tests of visual perception and motor coordination: administration, scoring, and teaching manual: New Jersey: Modern Curriculum Press.

Bo, J., Contreras-Vidal, J. L., Kagerer, F. A., & Clark, J. E. (2006). Effects of increased complexity of visuo-motor transformations on children’s arm movements.

Human Movement Science, 25(4–5), 553-567. doi:

http://dx.doi.org/10.1016/j.humov.2006.07.003

Bullock, D., Grossberg, S., & Guenther, F. H. (1993). A self-organizing neural model of motor equivalent reaching and tool use by a Mmultijoint arm. Journal of Cognitive Neuroscience, 5(4), 408-435. doi: 10.1162/jocn.1993.5.4.408

Carlsen, D. D., & Andre, T. (1992). Use of a microcomputer simulation and conceptual change text to overcome student preconceptions about electric circuits.

Journal of Computer-based Instruction, 19(4), 105-109.

Chang, H.-Y., Wu, H.-K., & Hsu, Y.-S. (2013). Integrating a mobile augmented reality activity to contextualize student learning of a socioscientific issue. British Journal of Educational Technology, 44(3), E95-E99. doi:

10.1111/j.1467-8535.2012.01379.x

Contreras-Vidal, J., Bo, J., Boudreau, J. P., & Clark, J. (2005). Development of visuomotor representations for hand movement in young children.

103

Experimental Brain Research, 162(2), 155-164. doi:

10.1007/s00221-004-2123-7

Cromack, J. (2008, Oct.). Technology and learning-centered education:

Research-based support for how the tablet PC embodies the Seven Principles of Good Practice in Undergraduate Education. Paper presented at the Frontiers in Education Conference, 2008. FIE 2008. 38th Annual.

Daly, C. J., Kelley, G. T., & Krauss, A. (2003). Relationship between visual-motor integration and handwriting skills of children in kindergarten: A modified replication study. American Journal of Occupational Therapy, 57(4), 459-462.

de Jong, T., Martin, E., Zamarro, J.-M., Esquembre, F., Swaak, J., & van Joolingen, W. R.

(1999). The integration of computer simulation and learning support: An example from the physics domain of collisions. Journal of Research in Science Teaching, 36(5), 597-615. doi:

10.1002/(SICI)1098-2736(199905)36:5<597::AID-TEA6>3.0.CO;2-6 de Jong, T., & Van Joolingen, W. R. (1998). Scientific Discovery Learning with

Computer Simulations of Conceptual Domains. Review of Educational Research, 68(2), 179-201. doi: 10.3102/00346543068002179

de Koning, B. B., & Tabbers, H. K. (2011). Facilitating understanding of movements in dynamic visualizations: an embodied perspective. Educational Psychology Review, 23(4), 501-521. doi: 10.1007/s10648-011-9173-8

Derting, T. L., & Cox, J. R. (2008). Using a Tablet PC To Enhance Student Engagement and Learning in an Introductory Organic Chemistry Course. Journal of

Chemical Education, 85(12), 1638. doi: 10.1021/ed085p1638

Dilber, R., Karaman, I., & Duzgun, B. (2009). High school students' understanding of projectile motion concepts. Educational Research and Evaluation, 15(3), 203-222. doi: 10.1080/13803610902899101

Enriquez, A. G. (2010). Enhancing Student Performance Using Tablet Computers.

College Teaching, 58(3), 77-84. doi: 10.1080/87567550903263859

Finkelstein, N. D., Adams, W. K., Keller, C. J., Kohl, P. B., Perkins, K. K., Podolefsky, N.

S., . . . LeMaster, R. (2005). When learning about the real world is better done virtually: A study of substituting computer simulations for laboratory

equipment. Physical Review Special Topics - Physics Education Research, 1(1), 010103.

Fister, K. R., & McCarthy, M. L. (2008). Mathematics instruction and the tablet PC.

International Journal of Mathematical Education in Science and Technology, 39(3), 285-292. doi: 10.1080/00207390701690303

Frolik, J., & Zurn, J. B. (2005). Evaluation of Tablet PCs for engineering content development and instruction. Computers in Education Journal, 15(3),

104

101-105.

Gardner, H., & Hatch, T. (1989). Educational Implications of the Theory of Multiple Intelligences. Educational Researcher, 18(8), 4-10. doi:

10.3102/0013189x018008004

Garg, A., Norman, G., Spero, L., & Taylor, I. (1999). Learning anatomy: do new computer models improve spatial understanding? Medical Teacher, 21(5), 519-522. doi:10.1080/01421599979239

Gilbert, J. K., & Watts, D. M. (1983). Concepts, misconceptions and alternative conceptions: Changing perspectives in science education. Studies in Science Education, 10(1), 61-98.

Glenberg, A. M., & Gallese, V. (2012). Action-based language: A theory of language acquisition, comprehension, and production. Cortex, 48(7), 905-922. doi:

10.1016/j.cortex.2011.04.010

Goldstein, D. J., & Britt, T. W. (1994). Visual-motor coordination and intelligence as predictors of reading, mathematics, and written language ability. Perceptual and Motor Skills, 78(3), 819-823. doi: 10.2466/pms.1994.78.3.819

Hestenes, D., & Halloun, I. (1995). Interpreting the force concept inventory. The Physics Teacher, 33(8), 502-506.

Hsu, Y.-S., & Thomas, R. A. (2002). The impacts of a web-aided instructional simulation on science learning. International Journal of Science Education, 24(9), 955-979. doi: 10.1080/09500690110095258

Huk, T. (2006). Who benefits from learning with 3D models? the case of spatial ability.

Journal of Computer Assisted Learning, 22(6), 392-404. doi:

10.1111/j.1365-2729.2006.00180.x

Inoue, T., Yamamoto, Y., Nakazawa, K., Shigeno, H., & Okada, K. (2005). Proposal of a map-making system for mobile learning that uses subjective geographic recognition. Paper presented at the Fifth IEEE International Conference on Advanced Learning Technologies, Kaohsiung, Taiwan.

Jimoyiannis, A., & Komis, V. (2001). Computer simulations in physics teaching and learning: a case study on students' understanding of trajectory motion.

Computers & Education, 36(2), 183-204.

Johansson, R. S., & Cole, K. J. (1992). Sensory-motor coordination during grasping and manipulative actions. Current Opinion in Neurobiology, 2(6), 815-823. doi:

10.1016/0959-4388(92)90139-C

Kane, S. K., Jayant, C., Wobbrock, J. O., & Ladner, R. E. (2009, Oct.). Freedom to roam:

a study of mobile device adoption and accessibility for people with visual and motor disabilities. Paper presented at the Proceedings of the 11th

international ACM SIGACCESS conference on Computers and accessibility,

105

Pittsburgh, Pennsylvania, USA.

Kim, J., Meltzer, C., Salehi, S., & Blikstein, P. (2011, Aug.). Process Pad: a multimedia multi-touch learning platform. Paper presented at the Proceedings of the ACM International Conference on Interactive Tabletops and Surfaces.

Koile, K., & Singer, D. (2006). Development of a tablet-pc-based system to increase instructor-student classroom interactions and student learning. Paper presented at the Proc. of Workshop on the Impact of Pen-Based Technology on Education (WIPTE’06).

Kozhevnikov, M., & Thornton, R. (2006). Real-Time Data Display, Spatial Visualization Ability, and Learning Force and Motion Concepts. Journal of Science Education and Technology, 15(1), 111-132. doi: 10.1007/s10956-006-0361-0

Krathwohl, D. R. (2002). A Revision of Bloom's Taxonomy: An Overview. Theory into Practice, 41(4), 212-218. doi: 10.2307/1477405

Kulp, M. T. (1999). Relationship between Visual Motor Integration Skill and Academic Performance in Kindergarten through Third Grade. Optometry & Vision Science, 76(3), 159-163.

Lane, A. E., & Ziviani, J. M. (2010). Factors influencing skilled use of the computer mouse by school-aged children. Computers & Education, 55(3), 1112-1122.

doi: 10.1016/j.compedu.2010.05.008

Lazonder, A. W., & Ehrenhard, S. (2014). Relative effectiveness of physical and virtual manipulatives for conceptual change in science: how falling objects fall.

Journal of Computer Assisted Learning, 30(2), 110-120. doi:

10.1111/jcal.12024

Lee, J. (1999). Effectiveness of computer-based instructional simulation: A meta analysis. International Journal of Instructional Media, 26(1), 71-85. doi:

citeulike-article-id:563542

Li, C., Pow, W. C., Wong, M. L., & Fung, C. W. (2010). Empowering student learning through Tablet PCs: A case study. Education and Information Technologies, 15(3), 171-180.

Lim, K. Y. (2011). What does the Tablet PC mean to you? A phenomenological

research. Innovations in Education and Teaching International, 48(3), 323-333.

doi: 10.1080/14703297.2011.593708

Linn, M. C., & Petersen, A. C. (1985). Emergence and Characterization of Sex Differences in Spatial Ability: A Meta--Analysis. Child Development, 56(6), 1479. doi: 10.1111/1467-8624.ep7252392

Lohman, D. F. (1996). Spatial ability and g. In I. D. P. Tapsfield (Ed.), (pp. 97-116).

Hillsdale, New Jersey: Lawrence Erlbaum Associates.

Lord, T. R. (1985). Enhancing the visuo-spatial aptitude of students. Journal of

106

Research in Science Teaching, 22(5), 395-405. doi: 10.1002/tea.3660220503 Møller, K. L., Georgsen, M., & Jelsbak, V. A. (2013, Mar.). Use of Tablets for Instruction

and Learning in Microbiology Labs. Paper presented at the Learning &

Teaching with Media & Technology ATEE-SIREM Winter Conference Proceedings 2013, Genoa, Italy.

Madeira, R. N., Correia, N., Guerra, M., Postolache, O., Dias, A., & Postolache, G.

(2011). Designing personalized therapeutic serious games for a pervasive assistive environment. Paper presented at the IEEE 1st International Conference on Serious Games and Applications for Health (SeGAH).

Marshall, P., Cheng, P. C.-H., & Luckin, R. (2010). Tangibles in the balance: a discovery learning task with physical or graphical materials. Paper presented at the Proceedings of the fourth international conference on Tangible, embedded, and embodied interaction, Cambridge, Massachusetts, USA.

Mayer, R. E., & Sims, V. K. (1994). For whom is a picture worth a thousand words?

Extensions of a dual-coding theory of multimedia learning. Journal of Educational Psychology, 86(3), 389.

Mayer, T., Lebedev, M., Hunger, R., & Jaegermann, W. (2005). Elementary processes at semiconductor/electrolyte interfaces: Perspectives and limits of electron spectroscopy. Applied Surface Science, 252(1), 31-42. doi:

10.1016/j.apsusc.2005.01.110

McGee, M. G. (1979). Human spatial abilities: Psychometric studies and

environmental, genetic, hormonal, and neurological influences. Psychological Bulletin, 86(5), 889-918. doi: 10.1037/0033-2909.86.5.889

Miura, S., Ravasio, P., & Sugimoto, M. (2010). Situated Learning with SketchMap.

Interaction Technology Laboratory, Department of Frontier Informatics. The University of Tokyo, Tokyo.

Moore, E., Utschig, T. T., Haas, K. A., Klein, B., Yoder, P. D., Zhang, Y., & Hayes, M. H.

(2008). Tablet PC technology for the enhancement of synchronous distributed education. Ieee Transactions on Learning Technologies, 1(2), 105-116.

Muller, D. A., Bewes, J., Sharma, M. D., & Reimann, P. (2008). Saying the wrong thing:

improving learning with multimedia by including misconceptions. Journal of Computer Assisted Learning, 24(2), 144-155. doi:

10.1111/j.1365-2729.2007.00248.x

Murray, O., & Olcese, N. (2011). Teaching and learning with iPads, ready or not?

TechTrends, 55(6), 42-48. doi: 10.1007/s11528-011-0540-6

O’Malley, P. J. (2010). Combining a Tablet personal computer and screencasting for chemistry teaching. New Directions(6), 64-67.

Olkun, S. (2003). Making connections: Improving spatial abilities with engineering

107

drawing activities. International Journal of Mathematics Teaching and Learning, 3(1), 1-10.

Olympiou, G., Zacharias, Z., & deJong, T. (2013). Making the invisible visible:

enhancing students' conceptual understanding by introducing

representations of abstract objects in a simulation. Instructional Science, 41(3), 575-596. doi: 10.1007/s11251-012-9245-2

Osborne, R. J., & Wittrock, M. C. (1983). Learning science: A generative process.

Science Education, 67(4), 489-508.

Oswald, D. (2011). Ideation and design of novel iPad Apps: A design education case

Oswald, D. (2011). Ideation and design of novel iPad Apps: A design education case