• 沒有找到結果。

第五章 結果與討論

6.2 未來展望

本研究方法已經在數值模擬及實驗結果上得到驗證,未來工作方 向是將此檢測系統模組化,更能符合商業效益。除此之外,可以改進 太陽能電池的加熱方式,以紅外線或高能量的強度調制光照射太陽能 電池[11]。當太陽能電池被高強度調制光照射而產生熱變形,ESPI 量 測裝置同時拍下其干涉條紋,並進行即時的判別,實驗架構的示意圖 如圖 6.1 所示。此方法的優點在於檢測太陽能電池時,電池能沿著輸 送線一直前進,不必因為檢測程序而停滯。

另一方面,還可對太陽能電池上的裂縫做破壞理論的研究。裂縫 在基材上形成時,裂縫尖端的應力強度因子及裂縫長度皆為造成整體 性破壞的關鍵,未來可針對這些因素作分析及歸納,進一步討論太陽 能電池的破壞強度,制訂結晶矽太陽能電池上容許裂縫尺寸的規範。

Laser

Camer CCD

Mirro

plane Reference splitte Beam

filter Spatial

燈泡能量切換

圖 6.1 以脈衝方式加熱太陽能電池示意圖

參考文獻

[1] 益通光能科技股份有限公司, http://www.e-tonsolar.com/.

[2] 茂迪股份有限公司, http://www.motech.com.tw/.

[3] Z. Fu, Y. Zhao, Y. Liu, Q. Cao, M. Chen, J. Zhang, and J. Lee ,

“Solar cell crack inspection by image processing,” Proc. Int. IEEE Conf. Business of Electronic Product Reliability and Liability, Shanghai, China, pp. 77-80, 2004.

[4] 陳心怡,太陽能電池板表面瑕疵檢測,國立中央大學資訊工程 研究所碩士論文,桃園縣,台灣,2006。

[5] 蔡欣儒,太陽能電池板的尺寸量測與線路瑕疵檢測,國立中央 大學資訊工程研究所碩士論文,桃園縣,台灣,2006。

[6] M. Kasai, H. Shimizu, T. Sawada, and Y. Gonhshi,

“Non-destructive observation of stacking faults of silicon-wafer by means of photoacoustic microscopy,” Analytical Sciences, Vol. 1, pp. 107-109, 1985.

[7] L. Berquez, D. Marty-Dessus, and J. L. Franceschi, “Defect detection in silicon wafer by photoacoustic imaging,” Japanese Journal of Applied Physics, Vol. 42, pp. 1198-1200, 2003.

[8] O. Breitenstein, M. Langenkamp, O. Lang, and A. Schirrmacher,

“Shunt due to laser scribing of solar cell evaluated by highly sensitive lock-in thermography,” Solar Energy Material & Solar Cells, Vol. 65, pp. 55-62, 2001.

[9] O. Breitenstein and M. Langenkamp, “Lock-in thermography

components,” Springer Series Advanced Microelectronics, Vol. 10 Springer, Berlin, 2003.

[10] O. Breitenstein, J. P. Rakotoniaina, M. H. Al Rifai and M. Werner,

“Shunt types in crystalline silicon solar cells,” Progress in Photovoltaics: Research & Applications, Vol. 12, pp. 529-538, 2004.

[11] E. D. Dunlop and D. Halton, “Radiometric pulse and thermal imaging methods for the detection of physical defects in solar cells and Si wafer in a production environment,” Solar Energy Material

& Solar Cells, Vol. 82, pp. 467-480, 2004.

[12] T. Fuyuki, H. Kondo, T. Yamazaki, Y. Takahashi, and Y. Uraoka ,

“Photographic surveying of minority carrier diffusion length in polycrystalline silicon cells by electroluminescence,” Applied Physics Letters, Vol. 86, 262108, 2005.

[13] P. Würfel, T. Trupke, T. Puzzer, E. Schaffer, W. Warta, and S. W.

Glunz, “Diffusion lengths of silicon solar cells from luminescence images,” Journal of Applied Physics, Vol. 101, 123110, 2007.

[14] M. Kasemann, D. Grote, B. Walter, W. Kwapil, T. Trupke, Y.

Augarten, R. A. Bardos, E. Pink, M. D. Abbott, and W. Warta,

“Luminescence imaging for the detection of shunts on silicon solar cells,” Progress in Photovoltaics: Research & Applications, Vol.

16, pp. 297-305, 2008.

[15] T. Trupke, E. A. Bardos, M. C. Schubert, and W. Warta,

“Photoluminescence imaging of silicon wafers,” Applied Physics Letters, Vol. 89, 044107, 2006.

[16] M. Kasemann, M. C. Schubert, M. The, M. Köber, M. Hermie, and

W. Warta, “Comparison of luminescence imaging and illuminated lock-in thermography on silicon solar,” Applied Physics Letters, Vol. 89, 224102, 2006.

[17] K. Ramspeck, K. Bothe, D. Hinken, B. Fischer, J. Schomidt, and R.

Brendel, “Recombination current and series resistance imaging of solar cells by combined luminescence and lock-in thermography,”

Applied Physics Letters, Vol. 90, 153502, 2007.

[18] A. Belyaev, O. Polupan, W. Dallas, S. Ostapenko, D. Hess, and J.

Wohlgemuth, “Crack detection using resonance ultrasonic vibrations in full-Size crystalline silicon wafers,” Applied Physics Letters, Vol. 88, 111907, 2006.

[19] W. Dallas, O. Polupan, and S. Ostapenko, “Resonance ultrasonic vibrations for crack detection in photovoltaic silicon wafers,”

Measurement Science and Technology, Vol. 18, pp. 852-858, 2007.

[20] J. N. Butters and J. A. Leendertz, “Holographic and video techniques applied to engineering measurements,” Transactions of the Institute of Measurement and Control, Vol. 4, pp. 349-354, 1971.

[21] C. Wykes, “Use of electronic speckle pattern interferometry (ESPI) in the measurement of static and dynamic surface displacement,”

Optical Engineering, Vol. 21(3), pp. 400-406, 1982.

[22] R. Jones and C. Wykes, Holographic and speckle interferometry, 2nd ed. Chap. 2, Combridge: Cambridge University Press 1989.

[23] A. Martínez, R. Rodríguez-Vera, J. A. Rayas, and H. J. Puga,

“Fracture detection by grating moiré and in-plane ESPI techniques,” Optical and Lasers Engineering, Vol. 39, pp. 525-536,

1982.

[24] R. R. Cordero and F. Labbé, “Measuring out-of-plane displacements by electronic speckle-pattern interferometry (ESPI) and whole-field subtractive moiré,” Measurment Science and Technology, Vol. 17, pp. 825-830, 2006.

[25] R. Spooren, “Standard charge-coupled device cameras for video speckle interferometry,” Optical Engineering, Vol. 33(3), pp.

889-896, 1994.

[26] G. Gülker, K. Hinsch, C. Hölscher, A.Kramer, and H.Neunaber,

“Electronic speckle pattern interferometry system for in situ deformation monitoring on building,” Optical Engineering, Vol.

29(7), pp. 816-820, 1990.

[27] P. Aswndt, C. D. Schmidt, D. Zielke, and S. Schubert, “ESPI solution for non-contacting MEMS-on-wafer testing,” Optics and lasers in Engineering, Vol. 40, pp. 501-515, 2003.

[28] O. J. Løberg and K. Høgmoen, “Use of modulated reference in electronic speckle pattern interferometry,” Journal of physics E:

Scientific Instruments, Vol. 9, pp. 847-851, 1976.

[29] O. J. Løberg and K. Høgmoen, “Vibration phase mapping using electronic speckle pattern interferometry,” Applied Optics, Vol. 15, pp. 2701-2704, 1976.

[30] K. Høgmoen and O. J. Løberg, “Detection and measurement of small vibrations using electronic speckle pattern interferometry,”

Applied Optics, Vol. 16, pp. 1869-1875, 1977.

[31] S. Nakadate, “Vibrations measurement using phase-shifting

4162-4167, 1986.

[32] W.-C. Wang, C.-H. Hwang, and S. Y. Lin, “ Vibration measurement by the time-averaged electronic speckle pattern interferometry methods,” Applied Optics, Vol. 35, pp. 4502-4509, 1996.

[33] R. Jones, “The design and application of speckle pattern interferometer for total plane strain field measurement,” Applied Optics, Vol. 8(5), pp. 215-219, 1976.

[34] C. C. Ma, C. H. Huang, “The Investigation of Three-Dimensional Vibration for Piezoelectric Rectangular Parallelepipeds by Using the AF-ESPI Method,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 48, pp. 142-153, 2001.

[35] J. A. Leemdertz and J. N. Butters, “An image-shearing speckle pattern interferometer for measuring bending moments,” Journal of Physics E: Scientific Instruments, Vol. 6, pp. 132-135, 1973.

[36] Y. Y. Hung and C.Y. Liang, “Image-shearing camera for direct measurement of surface strains,” Applied Optics, Vol. 18(7), pp.

1046-1051, 1979.

[37] S. Winther, “3D strain measurement using ESPI,” Optics and Lasers in Engineering, Vol. 8, pp.45-57, 1988.

[38] K. Nassim, L. Jorannes, A. Corent, S. Dilhaire, E. Schaub, and W.

Claeys, “Thermomechanical deformation imaging of power devices by electronic speckle pattern interferometry,”

Microelectronics Reliability, Vol. 38, pp. 1341-1345, 1998.

[39] E. Hack and R. Bronnimann, “Electronic speckle pattern Interferometry deformation measurement on lightweight structures

213-222, 1999.

[40] K. S. Kim, K. S. Kang, Y. J. Kang, and S. K. Cheong, “Analysis of an internal crack of pressure pipeline using ESPI and shearography,” Optics and Lasers in Engineering, Vol. 35, pp.

639-643, 2003.

[41] R. Wang and M. Kido, “High temperature fatigue deformation behaviors of thermally sprayd steel measured with electronic speckle pattern interferometry method,” Materials Research Bulletin, Vol. 38, pp. 1401-1411, 2003.

[42] R. Wang and M. Kido, “Using ESPI system to measure high temperature fatigue deformation of ceramics thermally sprayed SUS304 steel,” Journal of Materials Science, Vol. 39, pp.1389-1395, 2004.

[43] E. A. Zarate, E. G. Custodio, G. Carlos, T. Palacios, R.

Rodriguez-Vera, J. Hector, and Palacios-Soberanes, “Defect detection in metals using electronic speckle pattern interferometry,”

Solar Energy Material & Solar Cells, Vol. 88, pp. 217-225, 2005.

[44] R. Williams, “Becquerel photovoltaic effect in binary compounds,”

The Journal of Chemical Physics, Vol. 32(5), pp. 1505-1514, 1960.

[45] 太陽能電池發展歷史,http://en.wikipedia.org/wiki/Charles_Fritts [46] D. M. Chapin, C. S. Fuller and G. L. Pearson, “A new silicon p­n junction photocell for converting solar radiation into electrical power,” Journal of Applied Physics, Vol. 25, pp. 676, 1954.

[47] J. Nelson, The physics of solar cells, Imperial College Press 2003.

[48] 黃惠良,蕭錫鍊,周明奇,林堅楊,江雨龍,曾百亨,李威儀,

李世昌,林唯芳,太陽電池 solar cells,五南圖書出版公司,

2008。

[49] 林明獻,太陽能電池技術入門(修訂版),全華圖書股份有限公 司,2009。

[50] 林明獻,矽晶圓半導體材料技術(修訂版),全華圖書股份有限 公司,2007。

[51] M. A. Hopcroft, W. D. Nix, and T. W. Kenny, “What is the Young’s modulus of silicon,” Journal of Microelectromechamical System, Vol. 19(2), pp. 229-238, 2010.

[52] J. A. Hauch, D. Holland, M. P. Marder, and Harry L. Swinney,

“Dynamic fracture in single crystal silicon,” Physical Review Letters, Vol. 82(19), pp.3823-3826, 1999.

[53] B. Wong and R. Holbrook, “Microindentation for fracture and stress-corrosion cracking studies in single-crystal silicon,” Journal of the Electrochemical Society, Vol. 134, pp. 2254-2256, 1987.

[54] G. K. Teal and J. B. Little, “Growth of germanium single crystals,”

Physical Review Letters, Vol. 78, pp. 647, 1950.

[55] I. Chasiotis, S. W. Cho, and K. Jonnalagadda, “Fracture toughness and subcritical crack growth in polycrystalline silicon,” Journal of Applied Mechanics, Vol. 73, pp. 714-722, 2006.

[56] P. W. Bridgman, “Certain Physical Properties of Single Crystals of Tungsten, Antimony, Bismuth, Tellurium, Cadmium, Zinc, and Tin,” Proceedings of the American Academy of Arts and Sciences Vol. 60, No. 6 pp. 305-383, 1925.

lithium fluoride,” Review of Scientific Instruments, Vol. 7, pp. 133, 1936.

[58] J. Szlufcik, S. Sivoththamna, J. F. Nijs, R. P. Mertens, and Roger Van Overstraeten, “Low-cost industrial technologies of crystalline silicon solar cells,” Proceedings of the IEEE, Vol. 85(5), pp.

711-730, 1997.

[59] J. Lee, N. Lakshminarayan, S. Dhungel, K. Kim, and J. Yi,

“Optimization of fabrication process of high-efficiency and low-cost crystalline silicon solar cell for industrial applications,”

Solar Energy Material & Solar Cells, Vol. 93, pp. 256-261, 2009.

[60] J. Szlufcik, F. Duerinckx, J. Horzel, E. Van Kerschaver, H. Dekkers, S. De Wolf, P. Choulat, C. Allebe, and J. Nijs, “High-efficiency low-cost integral screen-printing multicrystalline silicon solar cells,” Solar Energy Material & Solar Cells, Vol. 74, pp. 155-163, 2002.

[61] A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. Zhao, and A. Wang, “Angle-dependent reflectance measurements on photovoltaic materials and solar cells,” Optics Communications, vol. 172, pp. 139-151, 1999.

[62] C. Leguijt, P. Lolgen, J. A. Eikelboom, A. W. Weber, F. M.

Schuurmann, W. C. Sinke, P. F. A. Alkemade, P. M. Sarro, C. H.

M. Marée, and L. A. Verhoef, “Low temperature surface passivation for silicon solar cells,” Solar Energy Material & Solar Cells, Vol. 40, pp. 297-345, 1996.

[63] A. Luque and S. H. Wiley, “Handbook of photovoltaic science and engineering,” West Sussex, pp. 268, 2003.

[64] B. Merle and M. Göken, “Fracture toughness of silicon nitride thin films of different thicknesses,” Acta Materialia Vol. 59, pp.

1772-1779, 2011.

[65] Y. Ren and D. C. C. Lam, “Characterizations of elastic behaviors of silicon nitride thin films with varying thicknesses,” Materials Science and Engineering A, Vol. 467, pp. 93-96, 2007.

[66] P. H. Wu, I. K. Lin, H. Y. Yan, K. S. Ou, K. S. Chen, and X.

Zhang, “Mechanical property characterization of sputtered and plasma enhanced chemical deposition (PECVD) silicon nitride films after rapid thermal annealing,” Materials Science and Engineering A, Vol. 168, pp. 117-126, 2011.

[67] K. Matoy, H. Schönherr, T. Detzel, T. Schöberl, R. Poppan, C.

Motz, and G. Dehm, “A comparative micro-cantilever study of the mechanical behavior of silicon based passivation films,” Thin Solid Films, Vol. 518, pp. 247-256, 2009.

[68] K. Matoy, H. Schönherr, T. Detzel, T. Schöberl, R. Poppan, C.

Motz, and G. Dehm, “A comparative micro-cantilever study of the mechanical behavior of silicon based passivation films,” Thin Solid Films, Vol. 518, pp. 247-256, 2009.

[69] H. Huang, K. J. Winchester, A. Suvorova, B. R. Lawn, Y. Liu, X. Z.

Hu, J. M. Dell, and L. Faraone, “Effect of deposition conditions on mechanical properties of low-temperature PECVD silicon nitride films,” Materials Science and Engineering A, Vol. 435-436, pp.

453-459, 2006.

[70] M. P. Hughey and R. F. Cook, “Massive stress changes in plasma-enhanced chemical vapor deposited silicon nitride films on

thermal cycling,” Thin Solid Films, Vol. 460, pp. 7-16, 2004.

[71] 林正文,商用型多晶矽太陽能電池之正面電極型態最佳化研 究,國立成功大學光電科學與工程研究所,台南市,台灣,2007。

[72] P. Doshi, J. Mejia, K. Tate and A. Rohatgi, “Integration of screen-printed and rapid thermal processing technologies for silicon solar cell fabrication,” IEEE Electron Device Letters, Vol.

17(8), pp. 404-409, 1996.

[73] J. Zhao, A. Wang, and M. A. Green, “High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates,” Solar Energy Material & Solar Cells, Vol. 65, pp. 429-435, 2001.

[74] A. V. Mazur and M. M. Gasik, “Thermal expansion of silicon at temperatures up to 1100℃,” Journal of materials processing technology, Vol. 209, pp. 723-727, 2009.

[75] V. A. Popovich, M. Janssen, I. M. Richardson T. van Amstel and J.

Bennett, “Microstructure and mechanical properties of aluminum back contact layers,” Solar Energy Material & Solar Cells, Vol. 95, pp. 93-96, 2011.

[76] M. M. Hilali, J. M. Gee, and P. Hacke, “Bow in screen-printed back-contact industrial silicon solar cells,” Solar Energy Material

& Solar Cells, Vol. 91, pp.1228-1233, 2007.

[77] M. F. Hafiz and T. Kobayashi, “Fracture toughness of eutectic Al-Si casting alloy with different microstructural features,” Journal of Materials Science, Vol. 31, pp. 6195-6200, 1996.

[78] T. H. Cheng, P. S. Kuo, C. Y. Ko, C. Y. Chen and C. W. Liu,

“Electroluminescence from monocrystalline silicon solar cell,”

Journal of Applied Physics, Vol. 105, 106107, 2009.

[79] A. T. Zehnder and M. J. Viz, “Fracture mechanics of thin plates cracked and shells under combined membrane, bending and twisting loading,” Applied Mechanics Reviews, Vol. 88, pp. 37-48, 2005.

[80] T. L. Anderson, Fracture Mechanics: Fundamentals and applications, CRC Press, Boca Raton, Florida, 1995.

[81] K. Pramod, Optical measurement techniques and applications, Artech House Inc., 1997.

[82] P. Meinlschmidt, K. D. Hinsch, R. S. Sirohi, and B. J. Thompson,

“Electronic speckle pattern interferometry principle and practice,”

SPIE Optical Engineering Press, 1996.