• 沒有找到結果。

第三節 研究限制與建議

一、 研究限制

本研究在概念診斷測驗中無法看到三組之間的顯著差異,以下提出幾項可能 的原因。第一,本研究者根據先前文獻,針對電化學的另有概念測驗再經修正後,

可能無法區分本研究所設計的三個組別間的差異,較無針對關於動畫使用方式的 差別,而未看出顯著差異。第二,研究對象為一類組的高二學生,而這些學生之 前已學過電化學的概念,不算第一次接觸,也有可能影響學生在研究過程中的概 念理解或是學習動機。第三,本研究的受限於教學實施時間,包含前後測,一共 僅四節課,讓學生在觀看動畫或進行產出、評析、修正等過程的時間有限,或許 不足以讓學生完全發揮,也影響到所蒐集焦點學生的資料量,也僅能夠針對該節 課做最大的解釋;除此之外,由於實施時間不夠長,對於學生情意面向的學習動

機影響也有限。第四,教學者亦為本研究者,同時授課且要搜集資料,可能較無 法全面顧及班級情況,且不排除有觀察者效應。

而關於製作動畫的組別,研究者為確保資料的完整性及讓學生便於操作,而 使學生兩至三人共用一台平板,因此無法使學生每人產出一個成品,且因為裝置 的外力因素,在第一階段的所蒐集到的成品量較少,且資料搜集是研究者以手機 翻拍學生在平板上的動畫進行分析,並無保存動畫的原始檔案。因此,在成品的 質性資料分析上,畫圖和製作動畫的組別,其成品數量會有差別。除了上述所提 及之外,研究者在學生的科學學習動機上,除了科學學習動機量表外,並無其他 質性資料可以佐證之,未來研究應可加入晤談,以比較及了解學生對於不同動畫 使用方式的情意及動機為何。

二、 未來研究之建議

1-3

VGEM

Wu 與 Puntambekar (2012) 有提到,外在表徵提供的順序,也會影響教學成效或學習效果。

三、 教學之建議

learning with

representation learning from

representation (Brooks, 2009;

Waldrip, Prain, & Carolan, 2010) , , , (2015)

(Berland & Hammer, 2012; Chin & Osborne, 2010; Hogarth, Bennett, Campbell, Lubben, & Robinson, 2005; Lemke, 1998)

參考文獻

中文文獻

江文瑋、劉嘉茹(2013)。運用嵌入式動畫 PPT 簡報教學之有效性探究-以高中生 氣體概念學習為例。科學教育研究與發展季刊,67,51-72。

柯明志(2002)。從心智模式的角度分析模型教學成效—以電流化學效應為例。臺 灣師範大學化學系學位論文,1-136。

張秀澂(2002)。電腦動畫融入教學對國中生電化學學習成就影響之研究。臺灣師 範大學化學系在職進修碩士班學位論文,1-162。

張欣怡、張淑苑、羅慶璋、洪振方(2015)。知識整合數位課程促進學生科學素養:

以 化 學 反 應 概 念 為 例 。教 育 科 學 研 究 期 刊,60(3) , 153-181 。 doi:10.6209/JORIES.2015.60(3).06

劉漢欽(2006)。大學生如何應用電腦模擬學習電化學概念之研究。高雄師大學報:

自然科學與科技類,20,23-42。

蘇金豆(2018)。應用創意電化學動畫概念圖學習探究學生認知能力。教育傳播與 科技研究,118,15-28。

英文文獻

Abraham, M. R., & Renner, J. W. (1983). Sequencing Language and Activities in Teaching High School Chemistry. A Report to the National Science Foundation.

Acar, B., & Tarhan, L. (2007). Effect of Cooperative Learning Strategies on Students’

Understanding of Concepts in Electrochemistry. International Journal of Science and Mathematics Education, 5(2), 349-373.

Ainsworth, S. (2008). The educational value of multiple-representations when learning complex scientific concepts. In Visualization: Theory and practice in science education (pp. 191-208): Springer.

Ainsworth, S., Prain, V., & Tytler, R. (2011). Drawing to learn in science. Science, 333(6046), 1096-1097.

Ardac, D., & Akaygun, S. (2004). Effectiveness of multimedia-based instruction that emphasizes molecular representations on students' understanding of chemical change. Journal of Research in Science Teaching, 41(4), 317-337.

Ardac, D., & Akaygun, S. (2005). Using Static and Dynamic Visuals to Represent Chemical Change at Molecular Level. International Journal of Science Education, 27(11), 1269-1298. doi:10.1080/09500690500102284

Atkinson, R. K. (2002). Optimizing learning from examples using animated pedagogical agents. Journal of Educational Psychology, 94(2), 416-427.

Barak, M., & Hussein-Farraj, R. (2012). Integrating Model-Based Learning and Animations for Enhancing Students’ Understanding of Proteins Structure and Function. Research in Science Education, 43(2), 619-636. doi:10.1007/s11165-012-9280-7

Ben-Zvi, R., Eylon, B.-S., & Silberstein, J. (1986). Is an atom of copper malleable?

Journal of Chemical Education, 63(1), 64-66.

Berland, L. K., & Hammer, D. (2012). Framing for scientific argumentation. Journal of Research in Science Teaching, 49(1), 68-94.

Bojczuk, M. (1982). Topic Difficulties in O-and A-Level Chemistry. School Science Review, 63(224), 545-551.

Brooks, M. (2009). Drawing, visualisation and young children’s exploration of “big ideas”. International Journal of Science Education, 31(3), 319-341.

Camacho, F. F., & Cazares, L. G. (1998). Partial possible models: An approach to interpret students' physical representation. Science Education, 82(1), 15-29.

Chang, H.-Y., & Quintana, C. (2006). Student-generated animations: supporting middle school students' visualization, interpretation and reasoning of chemical phenomena. . In Proceedings of the 7th International Conference of the Learning Sciences., 71-77.

Chang, H.-Y., Quintana, C., & Krajcik, J. S. (2010). The impact of designing and evaluating molecular animations on how well middle school students understand the particulate nature of matter. Science Education, 94(1), 73-94.

ChanLin, L.-J. (2000). Attributes of animation for learning scientific knowledge.

Journal of Instructional Psychology, 27(4), 228-228.

Chi, M. T. (2009). Active-constructive-interactive: A conceptual framework for differentiating learning activities. Topics in cognitive science, 1(1), 73-105.

Chin, C., & Osborne, J. (2010). Students' questions and discursive interaction: Their impact on argumentation during collaborative group discussions in science.

Journal of Research in Science Teaching, 47(7), 883-908.

Chiu, M.-H., & Wu, H.-K. (2009). The roles of multimedia in the teaching and learning of the triplet relationship in chemistry. In Multiple representations in chemical education (pp. 251-283): Springer.

Ciplickas, D., Davis, J., Hess, C., Lee, S., Malavasi, E., Mohammad, A., . . . Zanella, S. (2009). Designing an integrated circuit to improve yield using a variant design element. In: Google Patents.

Clark, D. B., Sampson, V., Chang, H.-Y., Zhang, H., Tate, E. D., & Schwendimann, B.

(2012). Research on critique and argumentation from the technology enhanced learning in science center. In Perspectives on Scientific Argumentation (pp.

157-199): Springer.

Dalebroux, A., Goldstein, T. R., & Winner, E. (2008). Short-term mood repair through art-making: Positive emotion is more effective than venting. Motivation and Emotion, 32(4), 288-295.

De Jong, O., Acampo, J., & Verdonk, A. (1995). Problems in teaching the topic of redox reactions: actions and conceptions of chemistry teachers. Journal of Research in Science Teaching, 32(10), 1097-1110.

De Jong, T., & Van Joolingen, W. R. (1998). Scientific Discovery Learning with Computer Simulations of Conceptual Domains. Review of Educational Research, 68(2), 179-201. doi:10.3102/00346543068002179

De Petrillo, L., & Winner, E. (2005). Does art improve mood? A test of a key assumption underlying art therapy. Art Therapy, 22(4), 205-212.

Doymus, K., Karacop, A., & Simsek, U. (2010). Effects of jigsaw and animation techniques on students’ understanding of concepts and subjects in electrochemistry. Educational Technology Research and Development, 58(6), 671-691. doi:10.1007/s11423-010-9157-2

Gabel, D. L. (1993). Use of the Particle Nature of Matter in Developing Conceptual Understanding. Journal of Chemical Education, 70(3), 193-194.

Gabel, D. L., Samuel, K., & Hunn, D. (1987). Understanding the particulate nature of matter. Journal of Chemical Education, 64(8), 695-697.

García, R. R., Quirós, J. S., Santos, R. G., González, S. M., & Fernanz, S. M. (2007).

Interactive multimedia animation with macromedia flash in descriptive geometry teaching. Computers & Education, 49(3), 615-639.

Garnett, P. J., Garnett, P. J., & Hackling, M. W. (1995). Students' alternative conceptions in chemistry: A review of research and implications for teaching and learning. Studeies in Science Education, 25(1), 69-96.

Garnett, P. J., & Treagust, D. F. (1992). Conceptual difficulties experienced by senior high school students of electrochemistry: Electric circuits and oxidation-reduction equations. Journal of Research in Science Teaching, 29(2), 121-142.

Gilbert, J. K. (2008). Visualization: An emergent field of practice and enquiry in science education. In Visualization: Theory and practice in science education (pp. 3-24): Springer.

Gilbert, J. K., & Treagust, D. (2009). Multiple representations in chemical education (Vol. 4): Springer.

Grubaugh, N. D., Ladner, J. T., Kraemer, M. U., Dudas, G., Tan, A. L., Gangavarapu, K., . . . Magnani, D. M. (2017). Genomic epidemiology reveals multiple introductions of Zika virus into the United States. Nature, 546(7658), 401.

Haidar, A. H., & Abraham, M. R. (1991). A comparison of applied and theoretical knowledge of concepts based on the particulate nature of matter. Journal of Research in Science Teaching, 28(10), 919-938.

Hameed, H., Hackling, M., & Garnett, P. J. (1993). Facilitating conceptual change in chemical equilibrium using a CAI strategy. International Journal of Science Education, 15(2), 221-230.

Hamza, K. M., & Wickman, P. O. (2008). Describing and analyzing learning in action:

An empirical study of the importance of misconceptions in learning science.

Science Education, 92(1), 141-164.

Harp, S. F., & Mayer, R. E. (1997). The role of interest in learning from scientific text and illustrations: On the distinction between emotional interest and cognitive interest. Journal of Educational Psychology, 89(1), 92-102.

Harrison, A. G., & Treagust, D. F. (2000). Learning about atoms, molecules, and chemical bonds: A case study of multiple-model use in grade 11 chemistry.

Science Education, 84(3), 352-381.

Hayes, D., Symington, D., & Martin, M. (1994). Drawing during science activity in the primary school. International Journal of Science Education, 16(3), 265-277.

Hegarty, M. (2004). Dynamic visualizations and learning: Getting to the difficult questions. Learning and Instruction, 14(3), 343-351.

Hoban, G., Loughran, J., & Nielsen, W. (2011). Slowmation: Preservice elementary teachers representing science knowledge through creating multimodal digital animations. Journal of Research in Science Teaching, 48(9), 985-1009.

doi:10.1002/tea.20436

Hoban, G., & Nielsen, W. (2013). Learning Science through Creating a ‘Slowmation’:

A case study of preservice primary teachers. International Journal of Science Education, 35(1), 119-146.

Hogarth, S., Bennett, J., Campbell, B., Lubben, F., & Robinson, A. (2005). A systematic review of the use of small-group discussions in science teaching with students aged 11–18, and the effect of different stimuli (print materials, practical work, ICT, video/film) on students’ understanding of evidence. Research evidence in education library.

Hubber, P., Tytler, R., & Haslam, F. (2010). Teaching and learning about force with a representational focus: Pedagogy and teacher change. Research in Science Education, 40(1), 5-28.

Johnson, P. (1998). Progression in children's understanding of a ‘basic’particle theory:

A longitudinal study. International Journal of Science Education, 20(4), 393-412.

Johnstone, A. H. (1993). The development of chemistry teaching: A changing response to changing demand. Journal of Chemical Education, 70(9), 701.

Jong, O. D., & Treagust, D. (2002). The Teaching and Learning of Electrochemistry.

In J. K. Gilbert, O. de Jong, R. Justi, D. F. Treagust, & J. H. van Driel (Eds.), Chemical Education: Towards Research-based Practice: Kluwer Academic Publishers.

Keig, P. F., & Rubba, P. A. (1993). Translation of representations of the structure of matter and its relationship to reasoning, gender, spatial reasoning, and specific prior knowledge. Journal of Research in Science Teaching, 30(8), 883-903.

Khan, S. (2007). Model-based inquiries in chemistry. Science Education, 91(6), 877-905. doi:10.1002/sce.20226

Kizilkaya, G., & Askar, P. (2008). The effect of an embedded pedagogical agent on the students’ science achievement. Interactive Technology and Smart Education, 5(4), 208-216.

Kozma, R. B. (1991). Learning with media. Review of Educational Research, 61(2), 179-211.

Kozma, R. B. (2003). Technology and classroom practices: An international study.

Journal of research on technology in education, 36(1), 1-14.

Kozma, R. B., & Russell, J. (1997). Multimedia and understanding: Expert and novice responses to different representations of chemical phenomena. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 34(9), 949-968.

Lee, K.-W. L. (1999). A comparison of university lecturers' and pre-service teachers' understanding of a chemical reaction at the particulate level. Journal of Chemical Education, 76(7), 1008-1012.

Lemke, J. (1998). Multiplying meaning. Reading science: Critical and functional perspectives on discourses of science, 87-113.

Lin, H.-S., Yang, T.-C., Chiu, H.-L., & Chou, C.-Y. (2002). Students’ Difficulties in Learning Electrochemistry. Proc. Natl. Sci. Counc. ROC(D), 12(3), 100-105.

Lin, H.-S., Yang, T. C., Chiu, H.-L., & Chou, C.-Y. (2002). Students' difficulties in learning electrochemistry. Procedings National Science Council Republic of China (D): Mathematics Science and Technology Education, 12(3), 100-105.

Linn, M. C., & Eylon, B.-S. (2011). Science learning and instruction: Taking advantage of technology to promote knowledge integration: Routledge.

Marbach-Ad, G., Rotbain, Y., & Stavy, R. (2008). Using computer animation and illustration activities to improve high school students' achievement in molecular genetics. Journal of Research in Science Teaching, 45(3), 273-292.

doi:10.1002/tea.20222

Mason, L., Lowe, R., & Tornatora, M. C. (2013). Self-generated drawings for supporting comprehension of a complex animation. Contemporary Educational Psychology, 38(3), 211-224.

Matuk, C., Zhang, J., Uk, I., & Linn, M. C. (2019). Qualitative graphing in an authentic inquiry context: How construction and critique help middle school students to reason about cancer. Journal of Research in Science Teaching, 56(7), 905-936.

doi:10.1002/tea.21533

Mayer, R. E., & Moreno, R. (2002a). Aids to computer-based multimedia learning.

Learning and Instruction, 12(1), 107-119.

Mayer, R. E., & Moreno, R. (2002b). Animation as an Aid to Multimedia Learning.

Educational Psychology Review, 14(1), 87-99.

Mayer, R. E., & Sims, V. K. (1994). For whom is a picture worth a thousand words?

Extensions of a dual-coding theory of multimedia learning. Journal of Educational Psychology, 86(3), 389-401.

Moreno, R., Mayer, R., & Lester, J. (2000). Life-like pedagogical agents in constructivist multimedia environments: Cognitive consequences of their interaction. Paper presented at the EdMedia+ Innovate Learning.

Nakhleh, M. B., Samarapungavan, A., & Saglam, Y. (2005). Middle school students' beliefs about matter. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 42(5), 581-612.

Novick, S., & Nussbaum, J. (1981). Pupils' understanding of the particulate nature of matter: A cross-age study. Science Education, 65(2), 187-196.

Osborne, R., & Freyberg, P. (1985). Learning in Science. The Implications of Children's Science: ERIC.

Osman, K., & Lee, T. T. (2014). Impact of Interactive Multimedia Module with Pedagogical Agents on Students’ Understanding and the Motivation in the Learning of Electrochemistry. International Journal of Science and Mathematics Education, 12, 395-421.

Paivio, A. (1990). Mental representations: A dual coding approach (Vol. 9): Oxford University Press.

Prain, V., & Tytler, R. (2012). Learning Through Constructing Representations in Science: A framework of representational construction affordances.

International Journal of Science Education, 34(17), 2751-2773.

doi:10.1080/09500693.2011.626462

Richland, L. E., Bjork, R. A., Finley, J. R., & Linn, M. C. (2005). Linking cognitive science to education: Generation and interleaving effects. Paper presented at the Proceedings of the twenty-seventh annual conference of the Cognitive Science Society.

Robinson, S. (2004). Simulation: the practice of model development and use (Vol. 50):

Wiley Chichester.

Salomon, G. (1979). Media and symbol systems as related to cognition and learning.

Journal of Educational Psychology, 71(2), 131-148.

Sanchez, C. A., & Wiley, J. (2006). An examination of the seductive details effect in terms of working memory capacity. Memory & cognition, 34(2), 344-355.

Sanger, M. J., & Greenbowe, T. J. (1997a). Common student misconceptions in electrochemistry: Galvanic, electrolytic, and concentration cells. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 34(4), 377-398.

Sanger, M. J., & Greenbowe, T. J. (1997b). Students' misconceptions in electrochemistry regarding current flow in electrolyte solutions and the salt bridge. Journal of Chemical Education, 74(7), 819-823.

Sanger, M. J., & Greenbowe, T. J. (2000). Addressing student misconceptions concerning electron flow in aqueous solutions with instruction including computer animations and conceptual change strategies. International Journal of Science Education, 22(5), 521-537. doi:10.1080/095006900289769

Schank, P., & Kozma, R. (2002). Learning chemistry through the use of a representation-based knowledge building environment. Journal of Computers in Mathematics and Science Teaching, 21(3), 253-279.

Schwamborn, A., Mayer, R. E., Thillmann, H., Leopold, C., & Leutner, D. (2010).

Drawing as a generative activity and drawing as a prognostic activity. Journal of Educational Psychology, 102(4), 872-879.

Serra, M. J., & Dunlosky, J. (2010). Metacomprehension judgements reflect the belief that diagrams improve learning from text. Memory, 18(7), 698-711.

Stieff, M., Bateman, R. C., & Uttal, D. H. (2005). Teaching and learning with three-dimensional representations. In Visualization in science education (pp. 93-120):

Springer.

Thompson, J., & Soyibo, K. (2002). Effects of lecture, teacher demonstrations, discussion and practical work on 10th graders' attitudes to chemistry and understanding of electrolysis. Research in Science & Technological Education, 20(1), 25-37.

Tippett, C. D. (2016). What recent research on diagrams suggests about learningwithrather than learningfromvisual representations in science.

International Journal of Science Education, 38(5), 725-746.

doi:10.1080/09500693.2016.1158435

Tsui, C.-Y., & Treagust, D. F. (2004). Motivational aspects of learning genetics with interactive multimedia. The American Biology Teacher, 66(4), 277-285.

Tytler, R., Prain, V., Hubber, P., & Waldrip, B. (2013). Constructing representations to learn in science: Springer Science & Business Media.

Van Meter, P., & Garner, J. (2005). The Promise and Practice of Learner-Generated Drawing: Literature Review and Synthesis. Educational Psychology Review, 17(4), 285-325. doi:10.1007/s10648-005-8136-3

Vermaat, H., Kramers-Pals, H., & Schank, P. (2003). The use of animations in chemical education. Paper presented at the Proceedings of the international convention of the association for educational communications and technology.

Waldrip, B., Prain, V., & Carolan, J. (2010). Using multi-modal representations to improve learning in junior secondary science. Research in Science Education, 40(1), 65-80.

Wiley, J. (2003). Cognitive and educational implications of visually-rich media: Images and imagination. Eloquent images: Writing visually in new media, 201-218.

Wiley, J., Ash, I., Sanchez, C., & Jaeger, A. (2011). Clarifying readers’ goals for learning from expository science texts. Text relevance and learning from text, 353-374.

Wiley, J., Sanchez, C. A., & Jaeger, A. J. (2014). The individual differences in working memory capacity principle in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (2ndedn, pp. 598–619). New York, N.Y.: Cambridge University Press.

Williamson, V. M., & Abraham, M. R. (1995). The effects of computer animation on the particulate mental models of college chemistry students. Journal of Research in Science Teaching, 32(5), 521-534.

Wu, H.-K. (2003). Linking the microscopic view of chemistry to real-life experiences:

Intertextuality in a high-school science classroom. Science Education, 87(6), 868-891. doi:10.1002/sce.10090

Wu, H.-K., & Puntambekar, S. (2012). Pedagogical Affordances of Multiple External Representations in Scientific Processes. Journal of Science Education and Technology, 21(6), 754-767. doi:10.1007/s10956-011-9363-7

Wu, H.-K., & Shah, P. (2004). Exploring visuospatial thinking in chemistry learning.

Science Education, 88(3), 465-492.

Wu, H.-K., Krajcik, J. S., & Soloway, E. (2001). Promoting understanding of chemical representations: Students' use of a visualization tool in the classroom. Journal of Research in Science Teaching, 38(7), 821-842.

Yang, E.-m., Andre, T., Greenbowe, T. J., & Tibell, L. (2003). Spatial ability and the impact of visualization/animation on learning electrochemistry. International Journal of Science Education, 25(3), 329-349.

doi:10.1080/09500690210126784

Yarroch, W. L. (1985). Student understanding of chemical equation balancing. Journal of Research in Science Teaching, 22(5), 449-459.

Yaseen, Z. (2016). Student-generated animations and the teaching and learning of chemistry. (Doctoral dissertation, University of Technology Sydney). Retrieved from http://hdl.handle.net/10453/44196

Yaseen, Z., & Aubusson, P. (2018). Exploring Student-Generated Animations, Combined with a Representational Pedagogy, as a Tool for Learning in Chemistry. Research in Science Education. doi:10.1007/s11165-018-9700-4 Zhang, Z. H., & Linn, M. C. (2011). Can generating representations enhance learning

with dynamic visualizations? Journal of Research in Science Teaching, 48(10), 1177-1198. doi:10.1002/tea.20443

附錄

附錄一 概念診斷測驗

電化學 概念測驗

班級:_______ 座號:_______

金屬活性順序:Na > Mg > Zn > Fe > Ni > Sn > Pb > Cu > Hg > Ag

"# → "#%+ '( *+ → *+,%+ 2'( .' → .'/%+ 3'( 一、

請依照下圖,回答右列1~4 題。(皆為單選)

1. 哪張圖最能表示鎳電極在左半電池溶液中的情形?

1. 哪張圖最能表示鎳電極在左半電池溶液中的情形?