• 沒有找到結果。

本 實 驗 藉 由 射 頻 磁 控 濺 鍍 沉 積 陰 極 材 料 鋰 鈷 氧 化 物 (lithium cobalt oxide; LiCoO2) 薄 膜 與 固 態 電 解 質 鋰 磷 氧 氮 化 物 (Lithium phosphorous oxynitride; LiPON)薄膜,並以熱蒸鍍法蒸鍍鋰金屬與 aromatic polyurea,組裝全固態鋰離子薄膜電池。對於所選擇之參數,

其結論如下:

1. LiCoO2 薄 膜 以 高 溫 爐 (furnace) 與 快 速 熱 退 火 爐 (rapid thermal annealing; RTA)熱處理皆具晶相產生,於 x 光繞射圖譜(x-ray diffraction; XRD)、拉曼光譜與掃描電子顯微鏡(scanning electron microscope; SEM)圖譜相較難判別其優劣。但於充放電量測之過 程,可知以 RTA 熱處理,並以升溫時間 2 min 所製作 LiCoO2薄 膜,具較佳之電化學特性,雖於 LiPON 薄膜未進行熱處理時仍無 法避免剝落之情況,但於全電池組裝之過程下,藉此參數製作陰 極材料應可取得較佳之數據。

2. LiPON 薄膜於 200°C 熱處理下,可使鋰金屬蒸鍍於固態電解質薄 膜上,而無任何剝落之狀況,且於阻抗量測下,發現 200°C 之熱 處理可稍微提高離子導電度。全電池之組裝上亦可成功點亮 LED 燈,故認為藉此參數所作之固態電解質,適合用於全電池上。

3. Aromatic polyurea 薄膜使用 4,4’-diaminodiphenylmethane (MDA)

89

與4,4’-diphenylmethane diisocyanate (MDI)作為材料,利用蒸鍍機 於 MDA 通入電流 20 A 與 MDI 通入電流 40 A 下進行共鍍。形成 之薄膜附著於全固態薄膜電池上,可使全固態薄膜電池於一般環 境下點亮 LED 燈。

90

參考文獻

[1] “Voltaic pile,” Wikipedia, the free encyclopedia. 17-Apr-2015.

[2] S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, and C. Capiglia, “Review on recent progress of

nanostructured anode materials for Li-ion batteries,” J. Power

Sources, vol. 257, pp. 421–443, Jul. 2014.

[3] M. S. Whittingham, “Electrical Energy Storage and Intercalation Chemistry,” Science, vol. 192, no. 4244, pp. 1126–1127, Jun. 1976.

[4] K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough,

“LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density,” Mater. Res. Bull., vol. 15, no. 6, pp. 783–789, Jun.

1980.

[5] A. Yoshino, K. Sanechika, and T. Nakajima, “Secondary battery,”

US4668595 (A), 26-May-1987.

[6] “Keywords to understanding Sony Energy Devices|Sony Energy Devices Corporation.” [Online]. Available:

http://www.sonyenergy-devices.co.jp/en/keyword/. [Accessed:

16-Jul-2015].

[7] S.-J. H. Seung-Wan Song, “Cycling-Driven Structural Changes in a Thin-Film Lithium Battery on Flexible Substrate,” Electrochem.

Solid-State Lett., vol. 12, no. 8, 2009.

[8] J. G. Kim, B. Son, S. Mukherjee, N. Schuppert, A. Bates, O. Kwon, M. J. Choi, H. Y. Chung, and S. Park, “A review of lithium and non-lithium based solid state batteries,” J. Power Sources, vol. 282, pp. 299–322, May 2015.

[9] K. Kanehori, K. Matsumoto, K. Miyauchi, and T. Kudo, “Thin film solid electrolyte and its application to secondary lithium cell,” Solid

State Ion., vol. 9–10, Part 2, pp. 1445–1448, Dec. 1983.

[10] J. B. Bates, N. J. Dudney, G. R. Gruzalski, R. A. Zuhr, A. Choudhury, C. F. Luck, and J. D. Robertson, “Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries,” J. Power Sources, vol. 43, no. 1–3, pp. 103–110, Mar.

1993.

[11] B. Wang, J. B. Bates, F. X. Hart, B. C. Sales, R. A. Zuhr, and J. D.

Robertson, “Characterization of Thin‐Film Rechargeable Lithium

91

Batteries with Lithium Cobalt Oxide Cathodes,” J. Electrochem. Soc., vol. 143, no. 10, pp. 3203–3213, Jan. 1996.

[12]S.-W. Song, H. Choi, H. Y. Park, G. B. Park, K. C. Lee, and H.-J. Lee,

“High rate-induced structural changes in thin-film lithium batteries on flexible substrate,” J. Power Sources, vol. 195, no. 24, pp. 8275–

8279, Dec. 2010.

[13] M. Koo, K.-I. Park, S. H. Lee, M. Suh, D. Y. Jeon, J. W. Choi, K.

Kang, and K. J. Lee, “Bendable Inorganic Thin-Film Battery for Fully Flexible Electronic Systems,” Nano Lett., vol. 12, no. 9, pp.

4810–4816, Sep. 2012.

[14] A. Patil, V. Patil, D. Wook Shin, J.-W. Choi, D.-S. Paik, and S.-J.

Yoon, “Issue and challenges facing rechargeable thin film lithium batteries,” Mater. Res. Bull., vol. 43, no. 8–9, pp. 1913–1942, Sep.

2008.

[15] M. S. Whittingham, “Lithium Batteries and Cathode Materials,”

Chem. Rev., vol. 104, no. 10, pp. 4271–4302, Oct. 2004.

[16] C. M. Julien, A. Mauger, K. Zaghib, and H. Groult, “Comparative Issues of Cathode Materials for Li-Ion Batteries,” Inorganics, vol. 2, no. 1, pp. 132–154, Mar. 2014.

[17] K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough,

“LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density,” Mater. Res. Bull., vol. 15, no. 6, pp. 783–789, Jun.

1980.

[18] Y. Shao-Horn, L. Croguennec, C. Delmas, E. C. Nelson, and M. A.

O’Keefe, “Atomic resolution of lithium ions in LiCoO2,” Nat. Mater., vol. 2, no. 7, pp. 464–467, Jul. 2003.

[19] Y. Yoon, C. Park, J. Kim, and D. Shin, “Lattice orientation control of lithium cobalt oxide cathode film for all-solid-state thin film

batteries,” J. Power Sources, vol. 226, pp. 186–190, Mar. 2013.

[20] P. Knauth, “Inorganic solid Li ion conductors: An overview,” Solid

State Ion., vol. 180, no. 14–16, pp. 911–916, Jun. 2009.

[21] “Characteristic X-rays | MyScope.” [Online]. Available:

http://www.ammrf.org.au/myscope/analysis/eds/xraygeneration/chara cteristic/. [Accessed: 30-Jun-2015].

[22] “Bremsstrahlung,” Wikipedia, the free encyclopedia. 21-Jun-2015.

[23] “Bragg’s law,” Wikipedia, the free encyclopedia. 16-Jun-2015.

[24] “Raman spectroscopy,” Wikipedia, the free encyclopedia.

27-Jun-2015.

92

[25] H. Y. Park, S. C. Nam, Y. C. Lim, K. G. Choi, K. C. Lee, G. B. Park, J. B. Kim, H. P. Kim, and S. B. Cho, “LiCoO2 thin film cathode fabrication by rapid thermal annealing for micro power sources,”

Electrochimica Acta, vol. 52, no. 5, pp. 2062–2067, Jan. 2007.

[26] “2013 Investigations on sputter deposited LiCoO2 thin.pdf.” . [27] Z. Hu, D. Li, and K. Xie, “Influence of radio frequency power on

structure and ionic conductivity of LiPON thin films,” Bull. Mater.

Sci., vol. 31, no. 4, pp. 681–686, Oct. 2008.

[28] S.-J. Hwang, “Characterization of the polyurea polymeric

waveguides fabricated using the chemical vapor deposition process,”

Opt. Laser Technol., vol. 40, no. 4, pp. 607–613, Jun. 2008.

[29] “4,4′-Diaminodiphenylmethane ≥97.0% (GC) | Sigma-Aldrich.”

[Online]. Available:

http://www.sigmaaldrich.com/catalog/product/aldrich/32950?lang=e n&region=TW. [Accessed: 02-Aug-2015].

[30]“Methylene diphenyl diisocyanate,” Wikipedia, the free encyclopedia.

01-Jul-2015.

[31] Y. Takahashi, M. Iijima, and E. Fukada, “Pyroelectricity in Poled Thin Films of Aromatic Polyurea Prepared by Vapor Deposition

Polymerization,” Jpn. J. Appl. Phys., vol. 28, no. 12A, p. L2245, Dec.

1989.

[32] “File:Diphenylmethane.png - Wikimedia Commons.” [Online].

Available:

https://commons.wikimedia.org/wiki/File:Diphenylmethane.png.

[Accessed: 03-Aug-2015].