• 沒有找到結果。

6. Zr60Al7.5Cu17.5Ni10B1Si4與Zr60Al7.5Cu17.5Ni10B2Si1合金薄帶分別以691 K 與 694 K 恆溫處理 1000 秒、2000 秒與 4000 秒後,XRD 結果顯示並無明顯之結晶繞射 峰。

7. 由 XRD 結果可發現,將 Zr60Al7.5Cu17.5Ni10B1Si4試片於721 K 恆溫熱處理 4000 秒後,可以獲得完全的結晶試片,其結晶相為斜方結構的ZrO2相與正方結構的 Zr2Ni 相。

8. 由 XRD 結果可發現,將 Zr62Al7.5Cu17.5Ni10B2Si1試片於724 K 恆溫熱處理 4000 秒後,可以獲得完全的結晶試片,其結晶相為斜方結構的ZrO2相與正方結構的 Zr2Ni 相以及立方結構的 Zr2Ni 相。

9. 由 TEM 的觀察可以發現 Zr62Al7.5Cu17.5Ni10B2Si1 合金薄帶於 694 K 恆溫處理 4000 秒後,於基材中可以發現大小約在 20 ~40 nm 之間的晶粒分佈其中。

參考文獻

1. 吳學陞,工業材料,149 (1999) 154.

2. A. Inoue, T. Zhang and T. Masumoto, Mater. Trans., JIM,36 (1995) 391.

3. A. Inoue, Mater. Trans., JIM, 36 (1995) 866.

4. A. Inoue, Materials Science Foundations, 6 (1999) 1.

5. A. Inoue and T. Zhang, Mater. Trans., JIM, 37 (1996) 1726.

6. A. Inoue, N. Nishiyama and T. Matsuda, Mater. Trans., JIM, 37 (1996) 181.

7. A. Inoue and K. Hashimoto, Amorphous and Nanocrystalline Materials, 2001.

8. M. Naka, K. Hashimoto and T. Masumoto, J. Non-Cryst. Solids, 31 (1979) 355.

9. T. C. Chieh, J. Chu, C. T. Liu and J. K. Wu, Mater. Lett., 57 (2003) 3022.

10. B.-M. Im, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami and K. Hashimoto, Corros. Sci., 37 (1995) 709.

11. H. Habazaki, H. Ukai, K. Izumiya and K. Hashimoto, Mater. Sci. Eng., A318 (2001) 77.

12. C. A. C. Sousa and C. S. Kiminami, J. Non-Cryst. Solids, 219 (1997) 155.

13. W. H. Peter, R. A. Buchanan, C. T. Liu, P. K. Liaw, M. L. Morrison, J. A. Horton, C.

A. Carmichael Jr. and J. L. Wright, Intermetallics, 10 (2002) 1157.

14. A. Inoue, H. Koshiba, T. Zhang and A. Makino, J. Appl. Phys., 83 (1998) 1967.

15. Y. Hara, T. Ando, R.C. O’Handley and N. J. Grant, J. Appl. Phys., 62 (1987) 1948.

16. A. Inoue, Mater. Sci. Eng., A226-228 (1997) 357.

17. A. Inoue and J. S. Gook, Mater. Trans., JIM, 36 (1995) 1180.

18. A. Inoue and J. S. Gook, Mater. Trans., JIM, 37 (1996) 32.

19. A. Inoue, T. Zhang, W. Zhang, and A. Takeuchi, Mater. Trans., JIM, 37 (1996) 99.

20. A. Inoue, T. Zhang and A. Takeuchi, Mater. Trans., JIM, 37 (1996) 1731.

21. A. Inoue and A. Makino, Nonostruct. Mater., 9 (1997) 403.

22. A. Inoue, M. Koshiba, T. Itoi and A. Makino, Appl. Phys. Lett., 73 (1998) 744.

23. A. Inoue, Mater. Sci. Eng., A304-306 (2001) 1.

24. V. Schroeder, C. Gilbert and R. Ritchie, Scripta Mater., 38 (1998) 1481.

25. A. Leonhard, M. Heilmaier, J. Eckert and L. Schultz, Mat. Res. Soc. Symp. Proc., 554 (1999) 137.

26. T. Zhang and A. Inoue, Mat. Res. Soc. Symp. Proc., Vol.554, p.361, 1999.

27. A. Inoue and C. Fan, Mat. Res. Soc. Symp. Proc., Vol.554, p.143, 1999.

28. A. Inoue, Intermetallics, 8 (2000) 455.

29. T. Chang, A. Inoue and T. Masumoto, Mater. Trans., JIM, 32 (1991) 1005.

30. A. Inoue, T. Zhang and T. Masumoto, J. Non-Cryst. Solids, 156-158 (1993) 473.

31. A. Inoue, T. Nakamura, T. Sugita, T. Zhang and T. Masumoto, Mater. Trans., JIM, 34 (1993) 351.

32. L. J. Chang, Master Thesis, Crystallization Behavior of Zr-Al-Cu-Ni Bulk Amorphous Alloy Doped with Boron, Kaohsiung, Taiwan, 2003.

33. Y. W. Chen, Master Thesis, Crystallization Behavior of Zr-Al-Cu-Ni Bulk Amorphous Alloy Doped with Silicon, Kaohsiung, Taiwan, 2003.

34. J. S. C. Jang, H. Y. Tsai, C.H. Tsau and C. J. Chen, The Minerals, Metals &

Materials Society, (1992) 95.

35. W. Klement, R. H. Wilens and P. Duwez, Nature, 187 (1960) 869.

36. .H. S. Chen and C.E. Miller, Rev. Sci. Instrum, 41 (1970) 1237.

37. A. Inoue, A. Kato, T. Zhang, S. G. Kim and T. Masumoto, Mater. Trans., JIM, 32 (1991) 609.

38. A. Inoue, T. Nakamura, N. Nishiyama and T. Masumoto, Mater. Trans., JIM, 33 (1992) 937.

39. R. W. Cahn, P. Hassen and E. J. Kramer(ed), Materials Science and Technology Vol.9, New York, USA, 1991.

40. K. L. Chapra, Thin Film Phenomena, McGraw-Hill, 1969.

41. W. Paul and R. J. Temkin, Adv. Phys., (1973) 531.

42. B. Li, N. Nordstrom and E. J. Lavernia, Mater. Sci. Eng., A237 (1997) 207.

43. R. Liu, J. Li, K. Dong, C. Zheng and H. Liu, Mater. Sci. Eng., B94 (2002) 141.

44. P. S. Grant, Prog. Mater. Sci., 39 (1995) 497.

45. C. R. M. Afonso, C. Bolfarini, C. S. Kiminami, N. D. Bassim, M. J. Kaufman, M. F.

Amateau, T. J. Eden and J. M. Galbraith, J. Non-Cryst. Solids, 284 (2001) 134.

46. Y. Saito, H. Utsunomiya, N. Tsuji and T. Sakai, Acta Mater., 47 (1999) 579.

47. Z. P. Xing, S. B. Kang and H. W. Kim, Metall. Mater. Trans., A33 (2002) 1521.

48. C. C. Koch, O. B. Kavin, C. G. Mckamey and J. O. Scarbrough, Appl. Phys. Lett., 43 (1983) 1017.

49. J. Lee, F. Zhou, K. H. Chung, N. J. Kim and E. J. Lavernia, Metall. Mater. Trans., A32 (2001) 3109.

50. M. S. El-Eskandarany and A. Inoue, Metall. Mater. Trans., A33 (2002) 135.

51. A. Sagel, H. Sieber, H.-J. Fecht and J. H. Perepezko, Acta Mater., 46 (1998) 4233.

52. A. Inoue, Acta Mater., 48 (2000) 279.

53. A. Inoue, T. Zhang and T. Masumoto, Mater. Trans., JIM, 30 (1989) 965.

54. A. Inoue, T. Zhang and T. Masumoto, Mater. Trans., JIM, 31 (1990) 177.

55. A. Peker and W. L. Johnson, Appl. Phys. Lett., 63 (1993) 2342.

56. A. Inoue, T. Zhang, T. Itoi and A. Takeuchi, Mater. Trans., JIM, 38 (1997) 359.

57. R. B. Schwarz and Y. He, Mater. Sci. Forum., 235-238 (1997) 231.

58. T. Zhang and A. Inoue, Mater. Trans., JIM, 39 (1998) 1001.

59. T. Zhang and A. Inoue, Mater. Trans., JIM, 40 (1999) 301.

60. R. Akatsuka, T. Zhang, M. Koshiba and A. Inoue, Mater. Trans., JIM, 40 (1999) 258.

61. A. Inoue, T. Shibata and T. Zhang, Mater. Trans., JIM, 36 (1995) 1420.

62. T. Zhang, A. Inoue and T. Masumoto, Mater. Sci. Eng., A181-182 (1994) 1423.

63. A. Inoue and W. Zhang, J. Appl. Phys., 85 (1999) 1000.

64. A. Inoue, X. M. Wang and I. Yoshii, Mater. Trans., JIM, 40 (1999) 1130.

65. 鄭振東, 非晶質金屬漫談,建宏出版社,Taipei,Taiwan,1990.

66. A. Inoue, Bulk Amorphous Alloys Practical Characteristics and Applications Institute for Material Research, Tohoku University, Sendai, Japan, 1999.

67. .H. –J. Guntherodt and H. Beck(ed), Glassy MetalsⅠ, Springer-Verlag, Berlin Heidelberg, Germany, 1981.

68. A. Inoue, K. Nakazato, Y. Kawamura, A. P. Tsai and T. Masumoto, Mater. Trans., JIM, 35 (1994) 95.

69. A. Inoue, T. Zhang and A. Takeuchi, Mater. Sci. Forum., 269-272 (1998) 855.

70. A. Inoue, A. Takeuchi and T. Zhang, Metall. Mater. Trans., A29 (1998) 1779.

71. A. Inoue, Buck Amorphous Alloys. Trans Tech Publications, Zurich, Swiss, 1998.

72. R. E. Reed-Hill, Physical Metallurgy Principles, PWS, Boston, USA, 1994.

73. Richard Zallen, The Physics of Amorphous Solids, A Wiley-Interscience,Canada,1983.

74. D. Turnbull, Contemp. Phys., 10 (1969) 473.

75. G. S. Fulcher, J. Amer. Cerm. Soc., 77 (1925) 3701.

76. S. R. Elliot, Physics of Amorphous Materials, USA, 1990.

77. 戴道生、韓汝琪,非晶態高等物理,電子業出版社,China,1984.

78. T. A. Waniuk, J. Schroers and W. L. Johnson, Appl. Phys. Lett., 78 (2001) 1213.

79. A. Inoue, W. Zhang, T. Zhang and K. Kurosaka, Acta Mater., 49 (2001) 2645.

80. A. Inoue, W. Zhang, T. Zhang and K. Kurosaka, J. Mater. Res., 16 (2001) 2836.

81. T. D. Shen and R.B. Schwarz, J. Mater. Res., 14 (1999) 2107.

82. T. D. Shen and R.B. Schwarz, Appl. Phys. Lett., 75 (1999) 49.

83. B. S. Murty and K. Hono, Mater. Trans., JIM, 41 (2000) 1538.

84. Z. P. Lu and C. T. Liu, Acta Mater., 50 (2002) 3501.

85. W. A. Johnson and K. F. Mehl, Trans. Am. Inst. Mining Met. Eng., 135 (1981) 315.

86. M. Avrami, J. Chem. Phys. 7 (1939) 1103.

87. M. Avrami, J. Chem. Phys. 8 (1940) 212.

88. M. Avrami, J. Chem. Phys. 9 (1941) 177.

89. D. W. Henderson, J. Non-Cryst. Solids, 30 (1979) 301

90. J. Vazquez, R. A. Ligero, P. Villares and R. Jimenez-Garay, Thermochim. Acta, 157 (1990) 181.

91. H. Yinnon and D.R. Uhlmann, J. Non-Cryst. Solids, 54 (1983) 253.

92. K. Matusita, T. Komatsu and R. Yokota, J. Mater. Sci., 19 (1984) 291.

93. J. Vazquez, R. L. Lopez-Alemany, P. Villares and R. Jimenez-Garay, J. Phys. Chem.

Solids, 61 (2000) 493.

94. Chung-Cherng Lin and Pouyan Shen, J. Solid State Chem., 112 (387) 1994

表1-1 非晶質合金之特性[23]

Fundamental Characteristics Application Fields High Strength

High Hardness High Fracture Toughness High Impact Fracture Energy

High Fatigue Strength High Elastic Energy High Corrosion Resistance

High Wear Resistance High Viscous Flowability

Good Soft Magnetism High Frequency Permeability

High Magnetostriction Efficient Electrode (Chlorine Gas)

High Reflection Ratio High Hydrogen Storage

Machinery Structural Materials Optical Precision Materials

Die Materials Tool Materials Cutting Materials Electrode Materials Corrosion Resistance Materials

Hydrogen Storage Materials Ornamental Materials Writing Appliance Materials

Sporting Good Materials Bonding Materials Soft Magnetic Materials

Composite Materials High Magnetostrictive Materials

表2-1 最初非晶質合金之系統分類[39]

類 型 代表性系統 成分範圍

T2(或貴金屬)+非金屬

Au-Si, Pd-Si, Co-P, Fe-B, Fe-P-C, Fe-Ni-P-B,

Mo-Ru-Si, Ni-B-Si

15 at%~25 at%非金屬

T1金屬+T2金屬(或銅) Zr-Cu, Zr-Ni, Y-Cu, Ti-Ni,

Nb-Ni, Ta-Ni, Ta-Ir 35 at%~65 at%T2或銅

A 金屬+B 金屬 Mg-Zn, Ca-Mg, Mg-Ga 各種範圍皆有

T1金屬+A 金屬 (Ti, Zr)-Be, Al-Y-Ni 20 at%~60 at%Be, 10 at%Y, 5 at%Ni

放射性元素+T1金屬 U-V, U-Cr 20 at%~40 at%T1

A 金屬=IA~IIA Group Metal

B 金屬=IB~IIB Group Transition Metal、IIIA Group Metal T1金屬=IIIB~VB Group Transition Metal

T2金屬=VIIB~VIIIB Group Transition Metal

表2-2 多元系塊狀非晶質合金種類與發展歷程[52]

非鐵系非晶質合金系統 鐵系非晶質合金系統

材 料 年 份 材 料 年

份 Mg-Ln-M [59]

Ln-Al-TM [53]

Ln-Ga-TM Zr-Al-TM [54]

Zr-Ti-Al-TM [ 61]

Ti-Zr-TM [62]

Zr-Ti-TM-Be [55]

Zr-(Nb, Pd)-Al-TM [61]

Pd-Cu-Ni-P [6]

Pd-Ni-Fe-P [57]

Pd-Cu-B-Si Ti-Ni-Cu-Sn [58,59]

1988 1989 1989 1990 1990 1993 1993 1995 1996 1996 1997 1998

Fe-(Al, Ga)-(P, C, B, Si, Ge) [17]

Fe-(Nb, Mo)-(Al, Ga)-(P, B, Si) Co-(Al, Ga)-(P, B, Si) Fe-(Zr, Hf, Nb)-B [56]

Co-Fe-(Zr, Hf, Nb)-B [56]

Ni-(Zr, Hf, Nb)-(Cr, Mo)-B [56]

Fe-Co-Ln-B [63]

Ni-Ti-P [60]

Ni-(Nb, Cr, Mo)-(P, B) [64]

1995 1995 1996 1996 1996 1996 1998 1999 1999

Ln=Lanthanide Metal, M=Ni, Cu, Zn TM=VIB~VIIIB Group Transition Metal

表2-3 多元系塊狀非晶質合金之成分分類[52]

Zr-Al-Ni、Zr-Al-Cu、Zr-Al-Ni-Cu、

Zr-Ti-Al-Ni-Cu、Zr-Nb-Al-Ni-Ln、Zr-Ga-Ni

第一類系統

( Ⅰ

)

ETM(or Ln)+Al+LTM

Ln-Al-Ni、Ln-Al-Cu、Ln-Al-Ni-Cu、

Ln-Ga-Ni、Ln-Ga-Cu

第二類系統

( Ⅱ

)

LTM+ETM+Metalloid Fe-Zr-B、Fe-Hf-B、Fe-Zr-Hf-B、

Fe-Co-Ln-B、Co-Zr-Nb-B

第三類系統

( Ⅲ

)

LTM(Fe)+Al or Ga+

Metalloid Fe-(Al, Ga)-Metalloid

Mg+Ln+LTM Mg-Ln-Ni、Mg-Ln-Cu

第四類系統

( Ⅳ

) TM(Zr orTi)+Be+LTM Zr-Ti-Be-Ni-Cu

第五類系統

( Ⅴ

)

LTM+Metalloid Pd-Ni-P、Pd-Cu-Ni-P、Pt-Ni-P

ETM=IVB~VIB Group Transition Metal LTM=VIIB~VIIIB Group Transition Metal

表2-4 非晶質合金之磁特性[65]

鐵心材料

Am-Fe78Si10B12 Am-Fe81B13Si4C2 取向性矽鋼片

磁 化(T) 1.56 1.61 2.00

居禮溫度(K) 720 673 1013

抗磁力(A/M) 1.6 0.64 8.0

鐵 損(W/kg) 0.10 0.05 1.5

稜形比 0.9 0.9 0.7

電 阻(10-8 Ω•m) 155 155 47

高導磁率材料

Am-Fe3Co70Si10B15 Ni-Mo10Fe30Mn1 Fe-Al5Si10

磁 化(T) 0.84 0.77 0.90

居禮溫度(K) 620 733 773

抗磁力(A/M) 0.16 0.8 4.0

鐵 損(W/kg) ~0 ~0 ~0

稜形比 ~1 x 105 3 x 105 3 x 105

電 阻(10-8 Ω•m) 910 120 500

表2-5 非晶質合金之決定因子[84]

表3-1 Zr65-X-YAl7.5Cu17.5Ni10BXSiY合金薄帶各組成元素之比例

Zr Al Cu Ni B Si

at% wt% at% wt% at% wt% at% wt% at% wt% at% wt%

1-1

63 74.8 7.5 2.6 17.5 14.5 10 7.7 1 0.2 1 0.4

1-2

62 74.2 7.5 2.6 17.5 14.6 10 7.7 1 0.2 2 0.7

1-3

61 73.6 7.5 2.7 17.5 14.7 10 7.8 1 0.2 3 1.1

1-4

60 73.0 7.5 2.7 17.5 14.8 10 7.8 1 0.2 4 1.5

2-1

62 74.4 7.5 2.7 17.5 14.6 10 7.8 2 0.3 1 0.4

2-2

61 73.8 7.5 2.7 17.5 14.8 10 7.8 2 0.3 2 0.8

表4-1 Zr65-X-YAl7.5Cu17.5Ni10BXSiY合金薄帶各種溫度與指標

T

g

(

o

C) T

x

(

o

C) T

l

(

o

C)

γ ∆Tx

(

o

C)

Base

620 699 1164 0.39 79

1-1

648 732 1139 0.41 84

1-2

652 735 1135 0.41 83

1-3

651 731 1175 0.40 80

1-4

674 751 1113 0.42 78

2-1

642 727 1118 0.41 85

2-2

654 719 1181 0.39 65

表4-2 Zr65-X-YAl7.5Cu17.5Ni10BXSiY合金薄帶各組成元素之分析比例

理論 SEM TEM

Atom% Weight% Atom% Weight% Atom% Weight%

Zr 60 74.8 62.18 73.62 59.03 70.67 Al 7.5 2.6 4.91 1.72 6.88 2.38 Cu 17.5 14.5 19.12 15.77 22.46 18.85

Ni 10 7.7 9.73 7.41 9.47 7.3

B 1 0.2 0 0 0 0

1-4

Si 4 0.4 4.06 1.48 2.02 0.74 Zr 62 74.4 62.78 73.28 62.29 73.21 Al 7.5 2.7 3.32 1.15 6.73 2.34 Cu 17.5 14.6 19.93 16.21 21.14 17.31

Ni 10 7.8 11.07 8.31 9.07 6.86

B 2 0.3 0 0 0 0

2-1

Si 1 0.4 2.91 1.04 0.78 0.28

結晶 非晶質

圖1-1 結晶與非晶質之原子排列方式[1]

圖1-2 Zr55Cu30Al10Ni5之室溫機械行為 (a)完全非晶質 (b)部分結晶 [25]

圖1-3 撞擊激冷法示意圖[1]

圖1-4 雙輪連續急冷示意圖[1]

圖1-5 激冷融液旋噴法示意圖[1]

圖1-6 平面流鑄法示意圖[1]

圖2-1 合金系統之分類圖[52]

圖2-2 結晶與非結晶之 X 光繞射結果[1]

圖2-3 施加外力於非晶質材料,原子對力之傳導方式[65]

圖2-4 非晶質合金之形成法則[52]

圖2-5 玻璃形成時,焓與比容之關係圖[72]

圖2-6 Zr59Al7.5Ni10Cu17.5B6非晶質合金之DSC 曲線[32]

Tg

Tx

Tg Tl

G1

G2

V, II

玻 璃

布朗液 黏滯性液體

過冷液體

液態金屬

圖2-7 非晶質比熱與溫度之關係圖[77]

(a) (b)

圖2-8 臨界冷卻速率與玻璃形成能力關係圖[52]

圖2-9 三種空間成長機制[92]

三度空間成長 二度空間成長 一度空間成長

Condition Processing Instrument

Alloy element combination

Computer program and Micro-balance at% as wt%

Transformation

Arc-melting and Drop-casting

Arc-melting and Drop-casting furnaces

200 torr Argon atmophere

Melt spinning Melt-spinning furnace 200 torr Argon

atmophere

Ribbons

Heat treatment

Heat treatment furnace 10-2 torr

Thermal analyses

DTA and DSC

Microstructure examinations and analyses

XRD, SEM and TEM

(a)

(b)

圖3-2 (a) 真空熔煉爐 (b) 冰水冷卻機之外觀圖

負電極

正電極 不銹鋼 支撐基

O’ring 不銹鋼保護外殼

熔點高之元素

熔點低之元素

銅坩堝 純鎢電

圖3-3 真空電弧熔煉爐之構造

負電極

正電極

O’ring

冷卻水入口 與出口 不銹鋼保護外殼

純鎢電

鑄造銅 合金鑄 銅漏斗

圖3-4 墬落式鑄造爐之構造圖

圖3-5 激冷旋噴熔煉爐之外觀圖

(a)非恆溫過程

(b)恆溫過程

圖3-6 升溫方式示意圖

10 K/min 873 K , 300 sec.

313 K , 600 sec.

Temperature (K)

Time (sec.) 313 K , 600 sec.

K/min

sec.

30 K/min 10 K/min

313 K , 600 sec.

313 K , 600 sec.

Temperature (K)

Time (sec.) K ,

圖4-1 Zr65-X-YAl7.5Cu17.5Ni10BXSiY合金薄帶之外觀圖與製作示意圖

Zr Cu Al Ni B Si

圖4-2 Zr65-X-YAl7.5Cu17.5Ni10BXSiY合金薄帶X 光繞射分析

20 30 40 50 60 70 80

Arbitrary Intensity

2θ

1-1 1-2 1-3 1-4 2-1 2-2

(a) X=1, Y=1

(b) X=1, Y=2

圖4-3 Zr65-X-YAl7.5Cu17.5Ni10BXSiY合金薄帶不同升溫速率之DSC 結 果

Tg

Tx

400 500 600 700 800

10 K/min 20 K/min 40 K/min

Exothermic (Arbitrary Units)

Temperature(K)

400 500 600 700 800

10 K/min 20 K/min 40 K/min

Exothermic (Arbitrary Units)

Temperature(K)

(c) X=1, Y=3

(d) X=1, Y=4

400 500 600 700 800

10 K/min 20 K/min 40 K/min

Exothermic (Arbitrary Units)

Temperature(K)

400 500 600 700 800

10 K/min 20 K/min 40 K/min

Exothermic (Arbitrary Units)

Temperature(K)

(e) X=2, Y=1

(f) X=2, Y=2

400 500 600 700 800

10 K/min 20 K/min 40 K/min

Exothermic (Arbitrary Units)

Temperature(K)

400 500 600 700 800

10 K/min 20 K/min 40 K/min

Exothermic (Arbitrary Units)

Temperature(K)

圖4-4 Zr65-X-YAl7.5Cu17.5Ni10BXSiY合金薄帶之真實玻璃轉換溫度與結 晶溫度

圖4-5 Zr65-X-YAl7.5Cu17.5Ni10BXSiY合金薄帶之∆Tx與γ值

1-1 1-2 1-3 1-4 2-1 2-2

60 70 80 90 0.36 0.38 0.40 0.42 0.44

T x(K)

Sample Number

γ

1-1 1-2 1-3 1-4 2-1 2-2

600 650 700 750 800

Tx

Temperature(K)

Sample Number

Tg

(a) Zr60Al7.5Cu17.5Ni10B1Si4

(b) Zr62Al7.5Cu17.5Ni10B2Si1

圖4-6 Zr60Al7.5Cu17.5Ni10B1Si4與Zr62Al7.5Cu17.5Ni10B2Si1合金薄帶之結 晶度與恆溫時間關係圖

0 10000 20000 30000 40000 50000

0 20 40 60 80

100 691 K 689 K 687 K

Crystallity (%)

Time (sec.)

0 1000 2000 3000 4000 5000 6000 7000

0 20 40 60 80 100

Crystallity (%)

Time (sec.)

694 K 692 K 690 K

圖4-7 Zr60Al7.5Cu17.5Ni10B1Si4合金薄帶之結晶度與恆溫時間關係圖

0 1000 2000 3000 4000 5000

0 20 40 60 80 100

Crystallity (%)

Time (sec.)

717 K 719 K 721 K

(a) Zr60Al7.5Cu17.5Ni10B1Si4

(b) Zr62Al7.5Cu17.5Ni10B2Si1

圖4-8 Zr60Al7.5Cu17.5Ni10B1Si4與Zr62Al7.5Cu17.5Ni10B2Si1合金薄帶之 BEI 影像

(a) Zr60Al7.5Cu17.5Ni10B1Si4

圖4-9 Zr60Al7.5Cu17.5Ni10B1Si4與Zr62Al7.5Cu17.5Ni10B2Si1合金薄帶之 Mapping 結果

10 µm

10 µm 10 µm

10 µm 10 µm

(b) Zr62Al7.5Cu17.5Ni10B2Si1

10 µm 10 µm

10 µm 10 µm

10 µm

(a) 明視野影像

(b) 暗視野影像

(c) 擇域繞射圖

圖4-10 Zr60Al7.5Cu17.5Ni10B1Si4合金薄帶之TEM 分析

(a) 明視野影像

(b) 暗視野影像

(c) 擇域繞射圖

圖4-11 Zr62Al7.5Cu17.5Ni10B2Si1合金薄帶之TEM 分析

(a) X=1, Y=1

(b) X=1, Y=2

圖5-1 Zr65-X-YAl7.5Cu17.5Ni10BXSiY合金薄帶ln[-ln(1-x)]對 lnφ作圖

2.0 2.5 3.0 3.5 4.0

-3 -2 -1 0 1 2 3

ln[-ln(1-x)]

lnφ

762 K (2) 760 K (2) 758 K (2) 756 K (2) 754 K (3)

2.0 2.5 3.0 3.5 4.0

-4 -3 -2 -1 0 1 2 3

ln[-ln(1-x)]

lnφ

765 K (2) 763 K (2) 761 K (2) 759 K (2) 757 K (2)

(c) X=1, Y=3

(d) X=1, Y=4

2.0 2.5 3.0 3.5 4.0

-3 -2 -1 0 1 2 3

ln[-ln(1-x)]

lnφ

767 K (2) 765 K (2) 763 K (2) 761 K (2) 759 K (3)

2.0 2.5 3.0 3.5 4.0

-5 -4 -3 -2 -1 0 1 2 3

ln[-ln(1-x)]

lnφ

770 K (3) 768 K (3) 766 K (3) 764 K (4) 762 K (4)

(e) X=2, Y=1

(f) X=2, Y=1

2.0 2.5 3.0 3.5 4.0

-6 -5 -4 -3 -2 -1 0 1 2 3

ln[-ln(1-x)]

lnφ

761 K (4) 759 K (4) 757 K (4) 755 K (4) 753 K (4)

2.0 2.5 3.0 3.5 4.0

-7 -6 -5 -4 -3 -2 -1 0 1 2

ln[-ln(1-x)]

lnφ

756 K (3) 754 K (3) 752 K (4) 750 K (4) 748 K (4)

(a) X=1, Y=1

(b) X=1, Y=2

圖5-2 Zr65-X-YAl7.5Cu17.5Ni10BXSiY合金薄帶ln[-ln(1-x)]對 1/T 作圖 1.26 1.28 1.30 1.32 1.34 1.36 1.38 1.40 -12

-10 -8 -6 -4 -2 0 2

4 10 K/min

20 K/min 40 K/min

ln[-ln(1-x)]

1000/T (K-1)

1.26 1.28 1.30 1.32 1.34 1.36 1.38 1.40 -12

-10 -8 -6 -4 -2 0 2

4 10 K/min

20 K/min 40 K/min

ln[-ln(1-x)]

1000/T (K-1)

(c) X=1, Y=3

(d) X=1, Y=4

1.26 1.28 1.30 1.32 1.34 1.36 1.38 1.40 -12

-10 -8 -6 -4 -2 0 2

4 10 K/min

20 K/min 40 K/min

ln[-ln(1-x)]

1000/T (K-1)

1.26 1.28 1.30 1.32 1.34 1.36 1.38 1.40 -12

-10 -8 -6 -4 -2 0 2

4 10 K/min

20 K/min 40 K/min

ln[-ln(1-x)]

1000/T (K-1)

(e) X=2, Y=1

(f) X=2, Y=2

1.26 1.28 1.30 1.32 1.34 1.36 1.38 1.40 -12

-10 -8 -6 -4 -2 0 2

4 10 K/min

20 K/min 40 K/min

ln[-ln(1-x)]

1000/T (K-1)

1.26 1.28 1.30 1.32 1.34 1.36 1.38 1.40 -12

-10 -8 -6 -4 -2 0 2

4 10 K/min

20 K/min 40 K/min

ln[-ln(1-x)]

1000/T (K-1)

圖5-3 Zr65-X-YAl7.5Cu17.5Ni10BXSiY合金薄帶成核飽和點之結晶度

1-1 1-2 1-3 1-4 2-1 2-2

40 45 50 55 60 65 70

Crystallity (%)

Sample Number

(a) Zr60Al7.5Cu17.5Ni10B1Si4

(b) Zr62Al7.5Cu17.5Ni10B2Si1

圖5-4 Zr60Al7.5Cu17.5Ni10B1Si4與Zr62Al7.5Cu17.5Ni10B2Si1合金薄帶之 DSC 結果

400 500 600 700 800

7.5 K/min 5 K/min 10 K/min

Exothermic (Arbitrary Units)

Temperature (oC)

400 500 600 700 800

10 K/min 7.5 K/min 5 K/min

Exothermic (Arbitrary Units)

Temperature (oC)

圖5-5 Zr60Al7.5Cu17.5Ni10B1Si4與Zr62Al7.5Cu17.5Ni10B2Si1合金薄帶之n 值對溫度作圖

720 730 740 750 760 770 780 790

-2 0 2 4 6 8 10 12

2 - 1

n

Temperature (oC) 1 - 4

(a) Zr60Al7.5Cu17.5Ni10B1Si4

(b) Zr62Al7.5Cu17.5Ni10B2Si1

圖5-6 Zr60Al7.5Cu17.5Ni10B1Si4與Zr62Al7.5Cu17.5Ni10B2Si1合金薄帶之 ln[-ln(1-x)]對 1/T 作圖

1.26 1.28 1.30 1.32 1.34 1.36 1.38

-16 -12 -8 -4 0 4

ln[-ln(1-x)]

1000/T (K-1)

5 K/min 7.5 K/min 10 K/min

1.28 1.30 1.32 1.34 1.36 1.38 1.40 1.42

-16 -12 -8 -4 0 4

ln[-ln(1-x)]

1000/T (K-1)

5 K/min 7.5 K/min 10 K/min

圖5-7 Zr60Al7.5Cu17.5Ni10B1Si4與Zr62Al7.5Cu17.5Ni10B2Si1合金薄帶成核 與成長活化能關係圖

5.0 7.5 10.0

350 400 450 500 550 600 650

Activity Energy (kJ/mol)

Heating Rate (K/min) 1-4 Nucleation

1-4 Growth 2-1 Nucleation 2-1 Growth

(a) Zr60Al7.5Cu17.5Ni10B1Si4

(b) Zr62Al7.5Cu17.5Ni10B2Si1

圖5-8 Zr60Al7.5Cu17.5Ni10B1Si4與Zr62Al7.5Cu17.5Ni10B2Si1合金薄帶 ln[-ln(1-x)]對 lnt 作圖

0 2 4 6 8 10

-12 -10 -8 -6 -4 -2 0 2 4

ln(-ln(1-x))

lnt (sec.) 694 K (2~5)

692 K (2~4) 690 K (2~5)

2 4 6 8 10

-12 -10 -8 -6 -4 -2 0 2 4

ln(-ln(1-x))

lnt (sec.) 721 K (2~4)

719 K (2~5) 717 K (2~5) 691 K (1~4) 689 K (1~5) 687 K (1~4)

(a) Zr60Al7.5Cu17.5Ni10B1Si4

(b) Zr62Al7.5Cu17.5Ni10B2Si1

圖5-9 Zr60Al7.5Cu17.5Ni10B1Si4與Zr62Al7.5Cu17.5Ni10B2Si1合金薄帶lnt 對1/T 做圖

1.438 1.440 1.442 1.444 1.446 1.448 1.450 1.452 1.454 1.456 6.8

7.0 7.2 7.4 7.6 7.8 8.0

10 % (373kJ/mol) 20 % (309kJ/mol) 30 % (300kJ/mol) 40 % (302kJ/mol) 50 % (305kJ/mol) 60 % (311kJ/mol) 70 % (316kJ/mol) 80 % (326kJ/mol) 90 % (346kJ/mol)

lnt (sec.)

1000/T (K-1)

1.38 1.40 1.42 1.44 1.46

5 6 7 8 9 10

11 90 % (352kJ/mol) 80 % (348kJ/mol) 70 % (343kJ/mol) 60 % (337kJ/mol) 50 % (331kJ/mol) 40 % (323kJ/mol) 30 % (316kJ/mol) 20 % (308kJ/mol) 10 % (293kJ/mol)

lnt (sec.)

1000/T (K-1)

(a) 低溫

(b) 高溫

圖5-10 Zr60Al7.5Cu17.5Ni10B1Si4合金薄帶lnt 對 1/T 做圖 1.384 1.386 1.388 1.390 1.392 1.394 1.396 1.398 5.7

6.0 6.3 6.6 6.9 7.2 7.5

10 % (511kJ/mol) 20 % (527kJ/mol) 30 % (524kJ/mol) 40 % (525kJ/mol) 50 % (520kJ/mol) 60 % (508kJ/mol)70 % (488kJ/mol) 80 % (467kJ/mol) 90 % (408kJ/mol)

lnt (sec.)

1000/T (K-1)

1.446 1.448 1.450 1.452 1.454 1.456 1.458 1.460 1.462 7.5

8.0 8.5 9.0 9.5 10.0 10.5

90 % (233kJ/mol)

lnt (sec.)

1000/T (K-1)

80 % (261kJ/mol) 70 % (273kJ/mol) 60 % (278kJ/mol) 50 % (282kJ/mol) 40 % (300kJ/mol) 30 % (328kJ/mol) 20 % (358kJ/mol) 10 % (418kJ/mol)

(a) Zr60Al7.5Cu17.5Ni10B1Si4

(b) Zr62Al7.5Cu17.5Ni10B2Si1

圖5-11 Zr60Al7.5Cu17.5Ni10B1Si4與Zr62Al7.5Cu17.5Ni10B2Si1合金薄帶恆 溫之X 光繞射分析

20 30 40 50 60 70 80

691 K-1000 sec.

691 K-2000 sec.

Arbitrary Intensity

2θ

691 K-4000 sec.

20 30 40 50 60 70 80

694 K-4000 sec.

694 K-2000 sec.

694 K-1000 sec.

Arbitrary Intensity

2θ

(a) Zr60Al7.5Cu17.5Ni10B1Si4於721 K 恆溫 4000 秒

(b) Zr62Al7.5Cu17.5Ni10B2Si1於724 K 恆溫 4000 秒

圖5-12 Zr60Al7.5Cu17.5Ni10B1Si4與Zr62Al7.5Cu17.5Ni10B2Si1合金薄帶恆 溫之結晶X 光繞射分析

20 30 40 50 60 70 80

* Zr2Ni(T)

# ZrO2

*(332)

*(411)

#(013)

*(310)

#(012) *(22

0)

*(211)

Intensity

2θ

20 30 40 50 60 70 80

*(420)

#(111) *(332)

*(411)

*(310)

#(012) *(220)

*(211)

* Zr2Ni(T)

# ZrO2

& Zr2Ni(C)

Intensity

2θ

&(440)

相關文件