• 沒有找到結果。

為評估引擎排氣電移動度分析儀(EEPS, Engine exhaust particle sizer)的奈米 微粒與次微米微粒數目濃度分佈與微粒形貌的關係,本研究以蒸發/核凝法產生 銀團粒,並使用燒結爐控制銀微粒之形貌(如鍊狀或球形),比對 EEPS 與掃描式 電移動度分析儀(SMPS, Scanning mobility particle analyzer)(參考儀器)量測不同 形貌之銀微粒的微粒數目濃度分佈與粒徑量測值(dm2),並與團粒單極充電理論 (Chang, 1981;Brown and Hemingway, 1995)計算的 dm2預估值比較。

多徑銀團粒數目濃度分佈的比對結果顯示,SMPS 與 EEPS 微粒總數目濃度 的相對差異約為 20 %,且與 SMPS 相較之下,EEPS 的 NMD 量測值皆較小。而 SMPS 與 EEPS 的 dm2量測值與銀微粒 TEM 影像比對結果顯示,量測電移動度 30 與 80 nm 銀微粒時,EEPS 與 SMPS 量測值差異較小是由於微粒形貌為球形,

而量測大於電移動度 80 nm 時,儀器量測值的差異持續存在是因為微粒形貌為橢 圓形。因此,造成 SMPS 與 EEPS 的量測值差異的主因為微粒形貌並非球形,微 粒形貌為團聚或橢圓形皆會影響 EEPS 的量測值。而本研究進一步以團粒充電理 論與圓球充電理論(Fuch, 1963)預估 EEPS 量測之 dm2,結果顯示 dm2量測值與預 測值之差異小於 10 %,只有 80 nm 的 dm2預測值高估約 16 %。因此,根據實驗 與理論計算的結果,微粒形貌是導致 EEPS 的數目濃度分佈偏移的原因。相同電 移動度粒徑之團粒與圓球微粒經過 EEPS 的單極充電器充電後,電移動度(Zp)較 高的團粒會坐落在 EEPS 中較上方的靜電計,造成粒徑的低估,進而影響到數目 濃度分佈的偏移。因此使用者在使用 EEPS 時須注意此方面的問題。

59

第六章 參考文獻

Asbach, C., Kaminski, H., Fissan H., Monz, C., Dahmann, D., Miihopt, S., Paur, H.

R., Kiesling, H. J., Herrmann, F., Voetz, M. and Kuhlbusch, T. A. J. (2009).

Comparison of four mobility particle sizers with different time resolution for stationary exposure measurements. J. Nanopart. Res., 11: 1593-1609.

Atkinson, R. W., Anderson, H. R., Sunyer, J., Ayres, J., Baccini, M., Vonk, J. M., Boumghar, A., Forastiere, F., Forsberg, B., Touloumi, G., Schwartz, J., Katsouyanni, K. (2001). Accute effects of particulate air pollution on respiratory admissions—Results from the APHEA 2 project. Am J RespCrit Care 164:1860–1866

Barone, T. L., Lall, A. A., Zhu, Y., Yu, R.-C. and Friedlander, S. K. (2006). Inertial deposition of nanoparticle chain aggregates: Theory and comparison with impactor data for ultrafine atmospheric aerosols. Journal of Nanoparticle Research, 8, 669–680.

Biswas, P., Wu, C. Y. (2005). Nanoparticles and the environment. (2005). JAWMA, 55:708-746.

Chang, J. S. (1981). Theory of diffusion charging of arbitrarily shaped conductive aerosol particles by unipolar ions. Journal of Aerosol Science, 12, 19–26

Dockery, D. W., Pope, C. A., Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., Ferris, B.

G., Speizer, F. E. (1993). An association between air pollution and mortality in six U.S. cities. New Engl J Med 329:1753–1759

Donaldson, K., Brown, D., Clouter, A., Duffin, R., MacNee, W., Renwick, L., Tran, L., Stone, V. (2002). The pulmonarytoxicology of ultrafine particles. Journal of Aerosol Medicine—Deposition Clearance and Effects in the Lung

61

15(2):213–220.

Filippov, A. V. (1994). Charge distribution among non-spherical particles in a bipolar charging environment. Journal of Aerosol Science, 25, 611–615.

Fuchs, N. A. (1963). On the stationary charge distribution on aerosol particles in bipolar ionic atomosphere. Geofisica Pura e Applicata, 56, 185–193.

Hering, S. V., Stolzenburg, M. R., Quant, F. R., Oberreit, D. R., Keady, P. B. (2005).

A laminar-flow, water-based condensation particle counter (WCPC), Aerosol Sci.

Technol., 39: 659–672.

Hinds, W. (1999). Aerosol Technology: Properties, behavior, and measurement of airborne particles, second edition. Wiley-Interscience, New York.

Hussein, T., Puustinen, A., Aalto, P., Makela, T., Hameri, K., and Kulmala, M. (2004).

Urban Aerosol Number Size Distributions, Atmos. Chem. Phys. 4:391–411.

Iida, K., Stolzenburg, M. R., McMurry, P., Smith, J. N., Quant, F. R., Oberreit, D. R., Keady, P. B., Eiguren-Fernandez, A., Lewis, G. S., Kreisberg, N. M., Hering, S.

V. (2008). An ultrafine, water-based condensation particle counter and its evaluation under field conditions, Aerosol Sci. Technol., 42: 862–871.

ISO 15900 (2009). Determination of particle size distribution - Dfferential electrical mobility analysis for aerosol particles.

ISO/WD 27891 (2010). Aerosol particle number concentration — Calibration of condensation particle counters.

Jiang, J., Chen, M., Kuang, C., Attoui, M., Mcmurry, P. H. (2011). Electrical mobility spectrometer using a diethylene glycol condensation particle counter for measurement of aerosol size distribution down to 1 nm, Aerosol Sci. Technol., 45:

510–521.

Jeong, C. H., Evans, G. J., Hopke, P. K., Chalupa, D., and Utell, M. (2006). Influence of Atmospheric Dispersion and New Particle Formation Events on Ambient Particle Number Concentration in Rochester, USA and Toronto, Canada, J. Air Waste Manage. 56:431–443.

Joeng, C. H. and Evans, G. J. (2009). Inter-Comparison of a Fast Mobility Particle Sizer and a Scanning Mobility Particle Sizer Incorporating an Ultrafine Water-Based Condensation Particle Counter. Aerosol Sci. & Tech., 43: 364- 373.

Johnson T, Caldow R, Pocher A, Mirme A, Kittelson D (2003) An engine exhaust particle sizerTM spectrometer for transient emission particle measurements. In: 9th Diesel Engine Emissions Reduction (DEER) Workshop 2003, Newport, RI, USA Jeong, C.-H., Evans, G. J., Hopke, P. K., Chalupa, D., and Utell, M. (2006). Influence

of Atmospheric Dispersion and New Particle Formation Events on Ambient Particle Number Concentration in Rochester, USA and Toronto, Canada, J. Air Waste Manage. 56:431–443.

Koylu, U. O., Faeth, G. M., Farias, T. L. and Carvalho, M. G. (1995). Fractal and Projected Structure Properties of Soot Aggregates, Comb. Flame, 100: 621 - 633.

Kreyling WG, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H, Oberdo¨rster G, Ziesenis A (2002) Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Env Health 65:1513–1530.

Ku, B. K. and Maynard, A. D. (2006). Generation and investigation of airborne silver nanoparticles with specific size and morphology by homogeneous nucleation, coagulation and sintering. J. Aerosol Sci, 37(4):452–470.

Laframboise, J. G., and Chang, J. (1977). Theory of charge deposition on charged

63

aerosol particles of arbitrary shape. Journal of Aerosol Science, 8, 331–338.

Lall, A. A. and Friedlander, S. K. (2006). On-line measurement of ultrafine aggregate surface area and volume distributions by electrical mobility analysis: I.

Theoretical analysis. J Aerosol Sci 37:260–271.

Lall, A. A., Seipenbusch, M. and Friedlander, S. K. (2006). On-line measurement of ultrafine aggregate surface area and volume distributions by electrical mobility analysis: II. Comparison of measurements and theory. J Aerosol Sci 37:272–282.

McMurry, P. H., Kuang, C., Smith, J. N., Zhao, J., Eisele, F. (2011). Atmospheric new particle formation: Physical and chemical measurements, in Aerosol Measurement: Principles, Techniques, and Applications, P. Kulkarni, P. A.

Baron, and K. Willeke, eds., John Wiley & Sons, New York, pp. 681–696.

Mordas, G., Manninen, H. E., Petaja, T., Aalto, P. P., Hameri, K., Kulmala, M. (2008).

On operation of the ultra-fine water-based CPC TSI 3786 and comparison with other TSI models (TSI 3776, TSI 3772, TSI 3025, TSI 3010, TSI 3007), Aerosol Sci. Technol., 42: 152–158.

Oberdörster, G., Oberdörster, E., and Oberdörster, J. (2005). Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect, 113:823–839

OECD ENV/JM/MONO (2011)12, Tour de Table at the 8th Meeting of the Working Party on Manufactured Nanomaterials, No.29: 32-35, 54-58, 58-62

Oh, H., Park, H. and Kim, S. (2004). Effects of particle shape on the unipolar diffusion charging of nonspherical particles. Aerosol Science and Technology, 38, 1045–1053.

Park, K., Kittelson, D. B. and Mcmurry, P. H. (2004). Structural properties of diesel

exhaust particle measured by transmission electron microscopy (TEM):

Relationships to particle mass and mobility. Aerosol Sci.Technol., 38: 881 - 889.

Rogak, S. N. and Flagan, R. C. (1993). The Mobility and Structure of Aerosol Agglomerates, Aerosol Sci. Technol., 18: 25 - 47.

Schmidt-Ott A (1988) New approaches to in situ characterization of ultrafine agglomerates. J Aerosol Sci 19:553–563.

Shin, W. G., Wang, J., Fissan, H., & Pui, D. Y.H. (2009). Structural property of silver nanoparticle agglomerates based on transmission electron microscopy:

Relationship to particle mobility analysis. Journal of Nanoparticle Research, 11, 163–173.

Shin, W. G., Mulholland, G. W. and Pui, D. Y. H. (2010a). Determination of volume, scaling exponents, and particle alignment of nanoparticle agglomerates using tandem differential mobility analyzers. J. Aerosol Sci., 41: 665- 681.

Shin, W. G., Wang, J., Mertler, M., Sachweh, B., Fissan, H. and Pui, D. Y. H. (2010b).

The effect of particle morphology on unipolar diffusion charging of nanoparticle agglomerates in the transition regime. J. Aerosol Sci., 41: 975- 986.

Sipila, M., Berndt, T., Petaja, T., Brus, D., Vanhanen, J., Stratmann, F., Patokoski, J., Mauldin, R. L., Hyvarinen, A. P., Lihavainen, H., Kulmala, M. (2010). The role of sulfuric acid in atmospheric nucleation, Science, 327: 1243–1246.

Wang, J., McNeill, V. F., Collins, D. R., and Flagan, R. C. (2002). Fast Mixing Condensation Nucleus Counter: Application to Rapid Scanning Differential Mobility Analyzer Measurements, Aerosol Sci. Technol. 36:678–689.

Wang, S. C., and Flagan, R. C. (1989). Scanning Electrical Mobility Spectrometer. J.

Aerosol Sci. 20:1485–1488.

65

Weber A. P. and Friedlander, S. K. (1997). In situ determination of the activation energy for restructuring of nanometer aerosol agglomerates. J Aerosol Sci 28:179–192.

Xia, T., Kovochich, M., Brant, J., Hotze, M., Sempf, J., Oberley, T., Sioutas, C., Yeh, J.

I., Wiesner, M. R., Nel, A. E., 2006. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett., 6 (8), 1794-1807.

附錄

附錄一 EEPS 與 FMPS 量測圓球微粒的粒徑與總數目濃度正確性

TSI 曾針對 FMPS 量測圓球微粒的粒徑與總數目濃度正確性進行探討,圖 7.1 為 粒 徑 與 總 數 目 濃 度 比 對 的 實 驗 系 統 配 置 圖 。 癸 二 酸 二 辛 脂 (DEHS, di(2-ethylexyl) sebacate)微粒以恆定噴霧器產生,導入 EC 篩選出特定單徑微粒 (75、100、250、400 nm)後,同時以 SMPS 與 FMPS 量測,並比對兩者所測得的 峰值(mode)直徑及微粒數目濃度。

圖 7.1 SMPS 與 FMPS 的粒徑量測比對實驗系統配置圖。

表 7.1 與圖 7.2 為 SMPS 與 FMPS 量測特定粒徑的 DEHS 微粒的量測數據,

SMPS 與 FMPS 的粒徑量測數據差異不大,但 FMPS 會低估總數目濃度。量測 75 nm 的 DEHS 微粒時,SMPS 與 FMPS 量測到的峰值直徑分別為 80.6 與 80.58 nm,總數目濃度則分別為 19200 與 11100 #/cm3,FMPS 低估總數目濃度約 42 %;

量測 100 nm 的 DEHS 微粒時,SMPS 與 FMPS 量測到的峰值直徑分別為 107 與 107.46 nm,總數目濃度則分別為 23400 與 14500 #/cm3,FMPS 低估總數目濃度 約 38 %。而根據圖 7.2 的量測結果可發現,FMPS 的量測數據呈現多徑分布,與 SMPS 的量測結果不同。

67

表 7.1 SMPS 與 FMPS 量測特定粒徑的峰值直徑與總數目濃度的比對。

峰值直徑 (nm) 總微粒數目濃度 (#/cm3)

SMPS FMPS SMPS FMPS

75 80.6 80.58 19200 11100

100 107 107.46 23400 14500

75 nm

(A) (C)

100 nm

(B) (D)

圖 7.2 SMPS 與 FMPS 量測特定粒徑 DEHS 微粒的量測數據 ((A)與(B)為 SMPS 的量測數據,(C)與(D)為 FMPS 的量測數據)。

而本研究以相同的實驗系統,但產生不同種類的微粒確認 EEPS 量測圓球微 粒的粒徑與總數目濃度正確性。本研究使用 21、40、64、82 及 102 nm 的微粒粒 徑標準品--聚苯乙烯乳膠(Polystyrene Latex, PSL, 3000 Series, Nanosphere Size Standards, Thermo Scientific, USA),圖 7.3 為粒徑量測比對之實驗系統配置圖。

以噴霧器(Constant Output Atomizer, Model 3076, TSI Inc., MN, USA)產生 PSL 微 粒,經過 Murple 個人多接衝擊器去除大水滴後,導入微分電動度分析儀 (Differential Mobility Analyzer, DMA)篩選出單徑的 PSL 微粒,再以 SMPS 與 EEPS 量測佈,比對量測到的微粒粒徑與販賣標示的粒徑是否相同,確認其粒徑量測正

Pressure Gauge Valve Filter

35 psi

69

EEPS 量測到的峰值直徑分別為 98.2 與 107.46 nm,EEPS 高估粒徑約 9.4 %;總 數目濃度則分別為 3520 與 785 #/cm3,EEPS 低估總數目濃度 70 %。而本研究也 使用 Chang 單極充電理論預估 EEPS 量測 100 nm PSL 微粒的 NMD,計算的 NMD 預估值為 106.5 nm,與實際量測的結果相差不到 1 nm。

而其餘粒徑的 PSL 微粒產生的濃度過低,EEPS 無法量測。由於 EEPS 的操作流 量為 10 L/min,以 EC 篩選出的單徑微粒氣流 (0.3 L/min)需再供給足夠的乾淨氣 體,才可讓 SMPS 與 EEPS 同時量測,但供給大量乾淨氣體時卻大幅降低 PSL 微粒濃度,因此本研究只呈現 100 nm PSL 微粒的比對數據。根據 PSL 微粒與 DEHS 微粒的比對結果顯示,EEPS 與 FMPS 可正確地量測圓球微粒的粒徑,但 仍會低估數目濃度,且總數目濃度越低時,低估的程度越嚴重。

表 7.2 SMPS 與 EEPS 量測 100 nm PSL 微粒的 NMD 與總數目濃度的比對。

NMD (nm) 總微粒數目濃度 (#/cm3) SMPS EEPS EEPSsimulation SMPS EEPS 100 98.2 107.46 106.5 3520 785

100 dm (nm) 0.0x100

1.0x104 2.0x104 3.0x104 4.0x104 5.0x104

dN/dlog(dp), #/cm3

100 nm PSL EEPS SMPS

圖 7.4 使用 SMPS 與 EEPS 量測 100 nm PSL 微粒的量測數據。

相關文件