• 沒有找到結果。

5 結論

本研究的主要目的在於利用遺傳演算法及模糊理論中的三角模糊數來探討投資人 情緒與股票報酬之關係。在本研究中,我們建構出三種投資模型:跟隨前一期投資人情 緒樂觀之股票即「買進前一期投資人情緒樂觀之股票」、跟隨前一期投資人情緒悲觀之 股票即「買進前一期投資人情緒悲觀之股票」以及股票排序指標自由演化的投資方法。

在本研究所設計的實驗方法,分為五個部分討論:

第一部分:探討個別投資模型其投資績效

在實驗結果中,我們可以發現不論在選擇分數較高的前 10、20 以及 30 支股票,利 用股票排序指標自由演化的方法都會有不錯的績效;在選擇分數較高的前 20 以及 30 支股票時,本研究所設計的三種投資模型其投資報酬率都能有超過一半以上的機率勝過 所有公司的投資報酬率,且對於買進前一期投資人情緒悲觀之股票的投資策略所獲得的 投資績效會優於另外兩種投資方法。而針對投資人情緒角度來看,不論在選擇分數較高 的前 10、20 以及 30 支股票,買進前一期投資人情緒悲觀之股票的投資策略所獲得的投 資績效會優於買進前一期投資人情緒樂觀之股票的投資策略。

第二部分:探討個別投資模型之累積報酬率

針對本研究所設計的投資模型,我們分別畫出其累積報酬率圖。我們可以發現在選 擇分數較高的前 10、20 以及 30 支股票時,我們研究所設計的演算法能夠建構出績效不 錯(亦即投資模型之累積報酬率勝過投資所有樣本公司的累積報酬率) 的三種投資模 型。在選擇分數較高的前 10 支股票時,股票排序指標自由演化之策略其所獲得的累積 報酬率相較於另外兩種投資模型來得高。在選擇分數較高的前 20、30 支股票時,買進 前一期投資人情緒悲觀股票與股票排序指標自由演化的投資模型都能有不錯的累積報 酬率,而買進前一期投資人情緒樂觀股票的投資模型,相較於另外兩種投資方法,其效 果明顯不彰。

第三部分:探討個別投資模型之投資風險比較

在本研究中,我們也詴著比較其個別投資模型的投資風險。其研究結果發現,我們 所建立的三種投資方法,能夠符合分散風險原則亦即若選擇投資股數愈多,則風險會愈 來愈低。我們所設計的三種投資模型,隨著選擇股數越來越多,其月均化報酬率的標準 差會越來越低。因此,本研究所設計的投資模型,能夠適時降低投資者的投資風險,以 防止在股市中選擇到績效不佳之股票。

第四部分:應用模糊理論對投資績效之貢獻

在實驗結果中,我們可以發現在選擇少數股(選擇 10 股)時,應用模糊理論之方法 所帶來的投資績效的效益不大(較無應用模糊理論的選方法遜色),但在選擇多數股(選擇 20 股、選擇 30 股以及選擇 40 股)時,應用模糊理論的選股方法,能夠有效提升其投資 績效(較無應用模糊理論的選方法佳)。因此,模糊理論之應用在本研究中,選股數越多 時能夠讓選股模型發揮更大效益。

第五部份:投資人情緒指標之權重值探討

在本研究所提出的股票排序指標自由演化的投資策略,實驗結果發現本益比、股價 淨值比與法人情緒這三項指標所獲得之權重值相對於其它指標高,亦即表示這三項指標 對於股票排序指標自由演化的投資模型有相當之重要性。因此,未來也許能針對這三項 投資人情緒指標對於選股做深入的探討,並深入研究其意義所在。

總結上述,本研究之貢獻為所設計的三種投資模型,若針對投資人情緒來看,買進 前一期投資人情緒悲觀股票的投資模型其投資績效會優於買進前一期投資人情緒樂觀 之股票的投資模型,而股票排序指標自由演化的投資模型不論在選股數低或高時,也能 有較佳的投資效益。另一方面,本研究所建構的三種投資模型能有效帶給投資者減低其

54

此外,本研究也發現遺傳演算法對於測詴期長短出現反應不足的地方,隨著訓練期 越短或者測詴期越短,遺傳演算法似乎會顯現出反應不足的地方。未來或許能多加入相 關的投資人情緒指標,或是將研究期間加長亦或是應用非線性模型來調整遺傳演算法整 體的穩健度,是值得深入研究的議題。另外,也能考慮根據投資人情緒的悲觀或樂觀程 度,適時做進出場的交易動作,將經驗與技術加以整合以便發展出能夠獲利的投資工 具,是本研究未來要努力研究的方向。

參考文獻

Alberg, D., Shalit, H. and Yosef, R. (2008). Estimating stock market volatility using asymmetric GARCH models.

Applied Financial Economics,

18(15), pp.1201–1208 Andrade, S. C., Chang, C. and Seasholes, M. S. (2008). Trading imbalances, predictable

reversals, and cross-stock price pressure. Journal of Financial Economics, 88(2), pp.406–423.

Baker, M. and Stein, J. C. (2004). Market liquidity as a sentiment indicator. Journal of

Financial Markets, 7(3), pp.271–299.

Baker, M. and Wurgler, J. (2007). Investor sentiment in the stock market. Journal of

Economic Perspectives, 21(2), pp.129–152.

Baker, M. and Wurgler, J. (2006). Investor sentiment and the cross-section of stock returns.

Journal of Finance,

56(4), pp. 1645–1680.

Basu, S. (1977). Investment performance of common stocks in relation to their price-earnings ratios: A test of the efficient market hypothesis. Journal of Finance,32(3), pp. 633–682.

Brock, W., Lakonishok, J., and Lebaron, B. (1992). Simple technical trading rules and the stochastic properties of stock returns. Journal of Finance, 47(5), pp. 1731–1764.

Brown, G. W. and Cliff, M. T. (2004). Investor sentiment and the near-term stock market.

Journal of Empirical Finance, 11(1), pp. 1–27.

Brown, G. W. and Cliff, M. T. (2005). Investor sentiment and asset valuation.

The Journal of Business, 78(2), pp. 405–440.

Chan, K. C. and Chen, N. (1988). An unconditional asset-pricing test and the role of firm size as an instrumental variable for risk. Journal of Finance,43(2), pp. 309–325.

Chang, J. (2006). Comparing personal portfolio strategies by genetic algorithm mixed with association rules.

First International Conference on Innovative Computing, Information

56

Chang, P. C., Liu, C. H. (2008). A TSK type fuzzy rule based system for stock price prediction. Expert Systems with Applications, 34(1), pp. 135–144.

Chang, P. -C., Wang, D. and Zhou, C. (2012). A novel model by evolving partially connected neural network for stock price trend forecasting. Expert Systems with Applications, 39(1), pp. 611–620.

Chapados, N. and Bengio, Y. (2001). Cost functions and model combination for VaR-based asset allocation using neural networks. IEEE Transactions on Neural Networks, 12(4), pp. 890–906.

Chen, J. -S., Hou, J. -L., Wu, S. -M. and Chien, Y. -W. (2009). Constructing investment strategy portfolios by combination genetic algorithms. Expert Systems with Applications, 36(2), pp. 3824–3828.

Chen, S. (2009). Predicting the bear stock market: Macroeconomic variables as leading indicators. Journal of Banking & Finance,33(2), pp.211–223.

Chong, T. T. and Ng, W. (2008). Technical analysis and the London stock exchange: testing the MACD and RSI rules using the FT30. Applied Economics Letters, 15(14), pp.

1111–1114.

Daniel, K., Hirshleifer, D. and Subrahmanyam, A. (1998). Investor psychology and security market under- and overreactions. Journal of Finance, 53(6), pp. 1839–1886.

Doeksen, B., Abraham, A., Thomas, J. and Paprzycki, M. (2005). Real stock trading using soft computing models. Information Technology: Coding and Computing, 2, pp.

162–167.

Donaldson, R. G. and Kamstra, M. (1997). An artificial neural network-GARCH model for international stock return volatility. Journal of Empirical Finance, 4(1), pp. 17–46.

Edirisinghe, N. C. P. and Zhang, X. (2007). Generalized DEA model of fundamental analysis and its application to portfolio optimization. Journal of Banking & Finance, 31(11), pp.3311–3335.

Fama, E. F. and French K. R. (1992). The cross-section of expected stock returns. The

Journal of Finance, 47(2), pp. 427–465.

Fang, Y. and Wang, S. -Y. (2005). A fuzzy index tracking portfolio selection model. Lecture

Notes in Computer Science, 3516, pp. 413–434.

Fernández, A. and Gómez, S. (2007). Portfolio selection using neural networks. Computers &

Operations Research, 34(4), pp.1177–1191.

Ferreira, M. A. and Santa-Clara,P. (2011). Forecasting stock market returns: The sum of the parts is more than the whole. Journal of Financial Economics, 100(3), pp.514–537.

French, K. R. (1980). Stock returns and the weekend effect. Journal of Financial Economics, 8(1), pp. 55–69.

Fu, F. (2009). Idiosyncratic risk and the cross-section of expected stock returns. Journal of

Financial Economics. 91(1), pp.24–37.

Gamil, A. A., El-fouly, R. S., and Darwish, N. M. (2007). Stock technical analysis using multi agent and fuzzy logic. Proceedings of the World Congress on Engineering, 1, pp.

142–147.

Goldberg, D. E. and Deb, K. (1991). A comparative analysis of selection schemes used in genetic algorithms. Foundation of Genetic Algorithms, pp. 69–93.

Hiemstra, Y. (1994). A stock market forecasting support system based on fuzzy logic.

Proceedings of the 27th annual Hawaii international conference on system sciences, 3,

pp. 281–287.

Holland, J. H. (1975). Adaptation In Natural and Artificial Systems, Ann Arbor: The University of Michigan Press.

Huang, C.-F., Chang, B. R. and Cheng, D.-W., Chang, C.-H. (2012). Feature selection and parameter optimization of a fuzzy-based stock selection model using genetic algorithms.

58

Huang, C.-F., Hsieh, T.-N., Chang, B. R. and Chang, C.-H. (2011). A comparative study of stock scoring using regression and genetic-based linear models. Proc. of 2011 IEEE

International Conference on Granular Computing (GrC 2011), pp. 268–273.

Hudson, R., Dempsey, M. and Keasey, K. (1996). A note on the weak form efficiency of capital markets: The application of simple technical trading rules to UK stock prices – 1935 to 1994. Journal of Banking & Finance, 20(6), pp. 1121–1132.

Hung, J. C. (2011). Applying a combined fuzzy systems and GARCH model to adaptively forecast stock market volatility. Applied Soft Computing, 11(5), pp. 3938–3945.

Jegadeesh, N. (1993). An empirical investigation of IPO returns and subsequent equity offerings. Journal of Financial Economics, 34(2), pp. 153–175.

Jiang, X. and Lee, B. (2007). Stock returns, dividend yield, and book-to-market ratio. Journal

of Banking & Finance, 31(2), pp. 455–475.

Kahneman, D. and Tversky, A. (1979). Prospect theory: An analysis of decision under risk.

Econometrica, 47(2), pp. 263–292.

Keim, D. B. (1983). Size-related anomalies and stock return seasonality: Further empirical evidence. Journal of Financial Economics, 12(1), pp. 13–32.

Kumar, A. and Lee, C. M. C. (2006). Retail investor sentiment and return comovements. The

Journal of Finance, 61(5), pp. 2451–2468.

Kunquan, S. and Yuehong, X. (2010). Investor sentiment and market price of risk in China's stock market. 2010 IEEE International Conference on Advanced Management Science

(ICAMS), 2, pp.178–182.

Kuo, M. -H. and Chen, C. -L. (2006). An ETF trading decision support system by using neural network and technical indicators. International Joint Conference on Neural

Networks (IJCNN '06), pp. 2394–2401.

Lai, K. K., Yu, L., Wang, S. and Zhou, C. (2006). A double-stage genetic optimization algorithm for portfolio selection. Lecture Notes in Computer Science, 4234, pp.

928–937.

Lewellen, J. (2004). Predicting returns with financial ratios. Journal of Financial Economics, 74(2), pp.209–235.

Lin, S. -K., Wang, S. -Y. and Tsai, P. -L. (2009). Application of hidden Markov switching moving average model in the stock markets: Theory and empirical evidence.

International Review of Economics & Finance, 18(2), pp. 306–317.

Mahfound, S., and Mani, G. (1996). Financial forecasting using genetic algorithms. Applied

Artificial Intelligence: An International Journal, 10(6), pp. 543–566.

Mazouz, K., Joseph, N. L. and Joulmer, J. (2009). Stock price reaction following large one-day price changes: UK evidence. Journal of Banking & Finance, 33(8), pp.1481–1493.

Nagel, S. (2005). Short sales, institutional investors and the cross-section of stock returns.

Journal of Financial Economics, 78(2), pp. 277–309.

Park, C. (2010). When does the dividend–price ratio predict stock returns?. Journal of

Empirical Finance, 17(1), pp. 81–101.

Quah, T. -S. and Srinivasan, B. (1999). Improving returns on stock investment through neural network selection. Expert Systems with Applications, 17(4), pp. 295–301.

Schmeling, M. (2009). Investor sentiment and stock returns: Some international evidence.

Journal of Empirical Finance, 16(3), pp. 394–408.

Sehgal, S., Sood, G.S and Rajput, N. (2010). Developing an investor sentiment index for India. International Review of Business and Finance, 2(1), pp. 87–96.

Shoaf, J. and Foster, J. A. (1998). The efficient set GA for stock portfolios. Proceedings of the

60

Tiryaki, F. and Ahlatcioglu, M. (2005). Fuzzy stock selection using a new fuzzy ranking and weighting algorithm. Applied Mathematics and Computation, 170(1), pp. 144–157.

Tversky, A. and Kahneman, D. (1981). The framing of decisions and the psychology choice.

Science, 211(4481), pp. 453–458.

Verma, R. and Soydemir, G. (2009). The impact of individual and institutional investor sentiment on market price of risk. Quarterly Review of Economics and Finance, 49(3), pp. 1129–1145.

Verma, R. and Soydemir, G. (2006). The impact of U.S. individual and institutional investor sentiment on foreign stock markets. The Journal of Behavioral Financial, 7(3), pp.

128–144.

Wang, Y. -F. (2003). Mining stock price using fuzzy rough set system. Expert Systems with

Applications, 24(1), pp. 13–23.

Wong, W., Manzur, M. and Chews, B. K. (2003). How rewarding is technical analysis?

Evidence from Singapore stock market. Applied Financial Economics, 13(7), pp.

543–551.

Yoon, Y. and Swales, G. (1991). Predicting stock price performance: A neural network approach. Proceedings of the Twenty-Fourth Annual Hawaii International Conference

on System Sciences, 4, pp. 156–162.

Zadah, L. A. (1973). Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on Systems, Man and Cybernetics, 3(1), pp.

28–44.

Zadah, L. A. (1965). Fuzzy set. Information and control, 8(3), pp. 338–353.

Zargham, M. R. and Sayeh, M. R. (1999). A web-based information system for stock selection and evaluation. Proceedings of the First International Workshop on Advance

Issues of E-Commerce and Web-Based Information Systems, pp. 81–83.

Zhou, C., Yu, L., Huang, T., Wang, S. and Lai, K. K. (2006). Selecting valuable stock using genetic algorithm. Lecture Notes in Computer Science, 42(47), pp. 688–694.

相關文件