• 沒有找到結果。

一、垂直高度位移

坐墊位置調高,對一般女性的影響為:

膝、踝關節活動度範圍增加,臀大肌、股二頭肌與腓腸肌活化增加。

坐墊位置於中間,對一般女性的影響為:

踩踏效益與低坐墊位置比值相似。

坐墊位置調低,對一般女性的影響為:

各關節活動度下降,膝關節穩定性較佳,下肢雙關節肌群活化降低,踩踏效益 較高。

二、水平前後位移:

坐墊位置調前,對一般女性的影響為:

股四頭肌群活化程度越大。

坐墊位置調後,對一般女性的影響為:

關節活動度增加,膝關節穩定性較佳,腓腸肌活化越大。

建議:本研究建議中間坐墊位置或許比較適合一般女性,建議未來實驗之探討可以 針對前後位置移動距離長短的造成關節受力做分析,能更詳細的了解坐墊位置的調整。

針對肌肉訓練的部分,臀大肌與腓腸肌比較容易受到坐墊位置上下及前後的改變,股四 頭肌群容易受到坐墊位置前後改變的影響,股二頭肌則容易受到坐墊位置上下改變的影 響。或許未來可以參考本實驗結果針對設定要訓練的肌群進而調整適當的坐墊位置。

引用文獻

Albertus-Kajee, Y., Tucker, R., Derman, W., & Lambert, M. (2010). Alternative methods of normalising EMG during cycling. Journal of Electromyography and Kinesiology, 20(6), 1036-1043.

Ansley, L., & Cangley, P. (2009). Determinants of “optimal” cadence during cycling.

European Journal of Sport Science, 9(2), 61-85.

Bini, M. R., Hume, P. A., & Croft, J. L. (2011). Effects of bicycle saddle height on knee injury risk and cycling performance. Sports Medicine, 41(6), 463-476.

Bini, R. R., Hume, P. A., Croft, J., & Kilding, A. E. (2013). Pedal force effectiveness in cycling: a review of constraints and training effects. Journal of Science and Cycling, 2(1), 11-24.

Bini, R. R., Hume, P. A., & Kilding, A. E. (2014). Saddle height effects on pedal forces, joint mechanical work and kinematics of cyclists and triathletes. European Journal of Sport Science, 14(1), 44-52.

Bini, R. R., Hume, P. A., Lanferdini, F. J., & Vaz, M. A. (2013). Effects of moving forward or backward on the saddle on knee joint forces during cycling. Physical Therapy in Sport, 14(1), 23-27.

55

Bini, R. R., Tamborindeguy, A. C., & Mota, C. B. (2010). Effects of saddle height, pedaling cadence, and workload on joint kinetics and kinematics during cycling. Journal of Sport Rehabilitation, 19(3), 301-314.

Bressel, E. (2001). The influence of ergometer pedaling direction on peak patellofemoral joint forces. Clinical Biomechanics, 16(5), 431-437.

Caimmi, M., Carda, S., Giovanzana, C., Maini, E. S., Sabatini, A. M., Smania, N., & Molteni, F. (2008). Using kinematic analysis to evaluate constraint-induced movement therapy in chronic stroke patients. Neurorehabilitation and Neural Repair, 22(1), 31-39.

Callaghan, M. J. (2005). Lower body problems and injury in cycling. Journal of Bodywork and Movement Therapies, 9(3), 226-236.

Candotti, C. T., Ribeiro, J., Soares, D. P., De Oliveira, A. R., Loss, J. F., & GUIMARÃES, A.

C. S. (2007). Effective force and economy of triathletes and cyclists. Sports Biomechanics, 6(1), 31-43.

Diefenthaeler, F., Bini, R. R., Laitano, O. L., Guimarães, A. C. S., Nabinger, E., Carpes, F.

P., . . . Coyle, E. F. (2006). Assessment of the Effects of Saddle Position on Cyclists' Pedaling Technique. Medicine & Science in Sports & Exercise, 38(5), S181.

Dorel, S., Couturier, A., & Hug, F. (2008). Intra-session repeatability of lower limb muscles activation pattern during pedaling. Journal of Electromyography and Kinesiology, 18(5), 857-865.

Duc, S., Bertucci, W., Pernin, J., & Grappe, F. (2008). Muscular activity during uphill cycling:

effect of slope, posture, hand grip position and constrained bicycle lateral sways.

Journal of Electromyography and Kinesiology, 18(1), 116-127.

Emanuele, U., Horn, T., & Denoth, J. (2011). Influence of racing position on cycling patterns [Abstract]. Porto, Portugal: 29th International Conference on Biomechanics in Sports.

Ericson, M. (1985). On the biomechanics of cycling. A study of joint and muscle load during exercise on the bicycle ergometer. Scandinavian Journal of Rehabilitation Medicine.

Supplement, 16, 1-43.

Ericson, M. O., & Nisell, R. (1988). Efficiency of pedal forces during ergometer cycling.

International Journal of Sports Medicine, 9(02), 118-122.

Faria, E. W., Parker, D. L., & Faria, I. E. (2004). The science of cycling: factors affecting performance-part 2. Sports Medicine, 35(4), 313-337.

Faria, E. W., Parker, D. L., & Faria, I. E. (2005). The science of cycling. Sports Medicine, 35(4), 285-312.

Farina, D., Macaluso, A., Ferguson, R. A., & De Vito, G. (2004). Effect of power, pedal rate, and force on average muscle fiber conduction velocity during cycling. Journal of Applied Physiology, 97(6), 2035-2041.

Ferrer-Roca, V., Roig, A., Galilea, P., & García-López, J. (2012). Influence of saddle height on lower limb kinematics in well-trained cyclists: Static vs. dynamic evaluation in bike fitting. The Journal of Strength & Conditioning Research, 26(11), 3025-3029.

Hansen, E. A., Voigt, M., Kersting, U. G., & Madeleine, P. (2014). Frequency and pattern of rhythmic leg movement in humans after fatiguing exercises. Motor Control, 18(3), 297-309.

Holmes, J., Pruitt, A., & Whalen, N. (1994). Lower extremity overuse in bicycling. Clinics in Sports Medicine, 13(1), 187-205.

Hug, F., & Dorel, S. (2009). Electromyographic analysis of pedaling: a review. J Electromyogr Kinesiol, 19(2), 182-198.

Jorge, M., & Hull, M. (1986). Analysis of EMG measurements during bicycle pedalling.

Journal of Biomechanics, 19(9), 683-694.

KaMen, G., Robertson, D., Hamill, J., Caldwell, G., & Kamen, G. (2004). Research Methods in Biomechanics. Champaign, IL: Human Kinetics.

Laplaud, D., Hug, F., & Grélot, L. (2006). Reproducibility of eight lower limb muscles

57

Electromyography and Kinesiology, 16(2), 158-166.

Lopes, A. D., Alouche, S. R., Hakansson, N., & Cohen, M. (2014). Electromyography during pedaling on upright and recumbent ergometer. International Journal of Sports Physical Therapy, 9(1), 76.

Lu, T.-W., Yen, H.-C., & Chen, H.-L. (2008). Comparisons of the inter-joint coordination between leading and trailing limbs when crossing obstacles of different heights. Gait

& posture, 27(2), 309-315.

Lucia, A., Juan, A., Montilla, M., Canete, S., Santalla, A., Earnest, C., & Perez, M. (2004). In professional road cyclists, low pedaling cadences are less efficient. Medicine and science in sports and exercise, 36(6), 1048-1054.

MacIntosh, B. R., Neptune, R. R., & Horton, J. F. (2000). Cadence, power, and muscle activation in cycle ergometry. Medicine & Science in Sports & Exercise, 32(7), 1281-1287.

Marsh, A. P., & Martin, P. E. (1995). The relationship between cadence and lower extremity EMG in cyclists and noncyclists. Medicine & Science in Sports & Exercise, 27(2), 217-225.

Marsh, A. P., Martin, P. E., & Foley, K. O. (2000). Effect of cadence, cycling experience, and aerobic power on delta efficiency during cycling. Medicine & Science in Sports &

Exercise, 32(9), 1630-1634.

McCoy, R. W., & Gregor, R. (1989). The Effect of Varying Seat Position on Knee Loads During Cycling.: 469. Medicine & Science in Sports & Exercise, 21(2), S79.

McCrea, P. H., Eng, J. J., & Hodgson, A. J. (2002). Biomechanics of reaching: clinical implications for individuals with acquired brain injury. Disability & Rehabilitation, 24(10), 534-541.

Neptune, R., Kautz, S., & Hull, M. (1997). The effect of pedaling rate on coordination in cycling. Journal of Biomechanics, 30(10), 1051-1058.

Nordeen-Snyder, K. S. (1977). The effect of bicycle seat height variation upon oxygen consumption and lower limb kinematics. Medicine & Science in Sports & Exercise, 9(2), 113-117.

Perotto, A., & Delagi, E. F. (2005). Anatomical guide for the electromyographer: the limbs and trunk. Springfield, IL: Charles C Thomas Publisher.

Rossato, M., Bini, R., Carpes, F., Diefenthaeler, F., & Moro, A. (2008). Cadence and workload effects on pedaling technique of well-trained cyclists. International Journal of Sports Medicine, 29, 746-752.

Sanderson, D. J., & Amoroso, A. T. (2009). The influence of seat height on the mechanical function of the triceps surae muscles during steady-rate cycling. Journal of Electromyography and Kinesiology, 19(6), e465-e471.

Schwellnus M. P., & Derman, E. W. (2005). Common injuries in cycling: prevention, diagnosis and management: review article. South African Family Practice, 47(7), p. 14, 16, 18-19.

Shennum, P. L. (1976). The effect of saddle height on oxygen consumption during bicycle ergometer work. Medicine & Science in Sports & Exercise, 8(2), 119-121.

Shennum, P. L., & DeVries, H. (1975). The effect of saddle height on oxygen consumption during bicycle ergometer work. Medicine and Science in Sports, 8(2), 119-121.

Shumway-Cook, A., & Woollacott, M. H. (2001). Motor Control: Theory and Practical Applications. Philadelphia, PA: Lippincott Williams & Wilkins.

Silberman, M. R., Webner, D., Collina, S., & Shiple, B. J. (2005). Road bicycle fit. Clinical Journal of Sport Medicine, 15(4), 271-276.

Takaishi, T., Yamamoto, T., Ono, T., Ito, T., & Moritani, T. (1998). Neuromuscular, metabolic, and kinetic adaptations for skilled pedaling performance in cyclists.

Medicine & Science in Sports & Exercise, 30(3), 442-449.

59

The constrained control of force and position in multi-joint movements. Neuroscience, 46(1), 197-207.

Wakeling, J., Blake, O., & Chan, H. (2010). Muscle coordination is key to the power output and mechanical efficiency of limb movements. The Journal of Experimental Biology, 213(3), 487-492.

Whitty, A. G., Murphy, A. J., Coutts, A. J., & Watsford, M. L. (2009). Factors associated with the selection of the freely chosen cadence in non-cyclists. European Journal of Applied Physiology, 106(5), 705-712.

Wu, C.-y., Wong, M.-k., Lin, K.-c., & Chen, H.-c. (2001). Effects of task goal and personal preference on seated reaching kinematics after stroke. Stroke, 32(1), 70-76.

   

相關文件