• 沒有找到結果。

踩踏效益在不同坐墊位置的變化之統計結果如下表 4-4。不同坐墊位置對踩踏效益 的差異變化,在重複量數變異數分析得知踩踏效益 (F(4,52)=.168, p=.954) 的效率變 化。

踩踏效益表現未達顯著交互作用 (p > .05),逐一進行主要效果檢定,比較如下,在 不同垂直高度 (F(2,26)=12.229, p=.000) 或水平前後 (F(2,26)=1.302, p=.288) 位置的位 移,會影響踩踏效益。經事後比較發現:高的坐墊位置比中 (p=.003 < .05) 及低 (p=.006

< .05) 的坐墊位置有較小的踩踏效益,如下圖 4-4-1。

圖 4-4-1 踩踏效益表現

Lower Middle

Upper

40 45 50 55 60 65 70

Backword Middle Forward

N*s  /  %MVC    

Pedaling Efficiency

表 4-4 不同坐墊位置的變化之踩踏效率表現平均數與標準差

Table 4. Descriptive statistics for the two-way repeated-measures ANOVA of Pedal Efficiency (N*s / %MVC)

Vertical Up position Medium position Lower position

Horizontal Backward Medium Forward Backward Medium Forward Backward Medium Forward F P

57.10 ± 15.95 57.30 ± 17.67 55.88 ± 14.15 63.32 ±16.13 62.54 ±16.66 61.24 ± 14.48 64.94 ± 15.63 66.13 ± 17.26 64.26 ± 14.54 0.168 0.954

#

significant interaction effect (p < .05)

a

denotes the significant differences in up position;

b

denotes significant differences in medium position; and

c

denotes significant differences in lower position

d

denotes the significant differences in backward position;

e

denotes significant differences in middle position; and

f

denotes significant differences in forward position

The main effect analysis revealed a significant difference between Vertical for Impulse (F =12.23, p < .000).

47 踝關節蹠屈 (Plantar flexion),則是坐墊位置越高增加越大 (Nordeen-Snyder, 1977)。踝 關節的結果也與先前的研究結果趨勢相同 (張柏苓, 2012; Bini et al., 2010),尤其兩篇研

有研究指出,改變坐墊位置約 4-5%會影響 25%的膝關節活動範圍,但以本實驗來說,

女性平均腿長在78.64 ± 3.44 公分,依本實驗改變坐墊位置 ± 5 公分,等於大約改變 ± 6%,因此本研究數值較此結果角度略顯偏大,尤其在踝關節更為明顯。

在標準化路徑的部分,本研究發現,坐墊位置越低,數值越接近1,也就代表膝關

節晃動程度越低,越穩定。當坐墊位置提高時,關節活動度範圍增加,則需要更多肌群,

尤其是雙關節肌群,來維持膝關節的穩定性,因此坐墊位置越高時,標準化路徑值則越 大,代表膝關節穩定性較差。

二、水平前後位移:

本研究發現下肢關節各關節活動度範圍,當坐墊位置越後面時各關節活動度範圍越 大。可能的原因,為坐墊越後面距離踏板較遠,所以關節活動度較不易受限制。但在最 大角度、最小角度時,則是坐墊位置越前面越大。此結果與先前研究的結果一致 (Bini et al., 2013),其研究發現當曲柄位於下死點的位置時,雖然坐墊越前面膝關節角度越大,

但髕骨股骨向前的受力較小。

在標準化路徑的部分,本研究發現,坐墊位置越後,數值越接近1,也就代表膝關

節晃動程度越低,越穩定。可能的原因,為坐墊越前面時,肌肉活化在股直肌群較為明 顯增加,用來穩定膝關節的雙關節肌群並沒有一起增加活化,因此,容易造成膝關節的 不穩定增加。

49

第二節

坐墊位置對動力學的影響 一、垂直高度位移:

本研究結果發現在垂直踩踏力量方面,坐墊位置上下位移並不會影響最大踩 踏力量及踩踏垂直衝量。但垂直踩踏衝量有座位越低衝量越大的趨勢。但由於本 研究所找的參與者皆為一般女性,對踩踏的技巧不熟悉及踩踏敏感度較低,因此 差異沒有顯著性的變化,在先前的研究也同時有發現坐墊高度對踩踏效益影響不 大 (Ericson & Nisell, 1988)。但是,對於有訓練過的運動員來說就有不同的看法,

有學者提及對於有訓練過的運動員是非常敏感的 (Bini et al., 2014),只要一點小小 的改變就有可能會影響其運動表現,或許相較於一般的騎乘者來說,在踩踏力量 方面會比較難看出明顯的變化。

二、水平前後位移:

本研究觀察到前後移動坐墊位置會影響踩踏垂直衝量的變化,當坐墊位置越 往後面移動踩踏垂直衝量越大。有學者提出 (Bressel, 2001),當踩踏過程有較大的 力量峰值時,會使膝關節彎曲角度變大,而增加髕骨的壓力,然而回顧上述提及 的關節運動學,卻發現本研究當坐墊位置較後面時,除了踩踏衝量大之外,最大 及最小關節角度則越小,與學者提出的趨勢相反。

綜觀上述的討論結果,由於踩踏力量是伴隨著髖關節、膝關節、踝關節之間 的協調性及肌肉間的作用力所影響,因此單純只針對運動學、動力學做探討比較 難完整了解整體踩踏的情形,以下會針對肌肉活化情形,做詳細的討論。

第三節

坐墊位置對肌肉活化的影響 1986),腓腸肌則與先前研究 (Ericson, 1985; Sanderson & Amoroso, 2009) 有一致性,坐 墊越低活化量越低。在股直肌與股內側肌的部分,在之前的研究中 (Jorge & Hull, 1986)

51

骨向前的受力 (Bini, Hume, Croft, & Kilding, 2013),因此無論向前、向後或向下的位移 都可能會造成膝關節壓力的改變,對於長時間騎乘自行車者,也可能提升傷害的發生 率。

53

第五節

結論與建議 以下針對本研究結果做整理:

一、垂直高度位移

坐墊位置調高,對一般女性的影響為:

膝、踝關節活動度範圍增加,臀大肌、股二頭肌與腓腸肌活化增加。

坐墊位置於中間,對一般女性的影響為:

踩踏效益與低坐墊位置比值相似。

坐墊位置調低,對一般女性的影響為:

各關節活動度下降,膝關節穩定性較佳,下肢雙關節肌群活化降低,踩踏效益 較高。

二、水平前後位移:

坐墊位置調前,對一般女性的影響為:

股四頭肌群活化程度越大。

坐墊位置調後,對一般女性的影響為:

關節活動度增加,膝關節穩定性較佳,腓腸肌活化越大。

建議:本研究建議中間坐墊位置或許比較適合一般女性,建議未來實驗之探討可以 針對前後位置移動距離長短的造成關節受力做分析,能更詳細的了解坐墊位置的調整。

針對肌肉訓練的部分,臀大肌與腓腸肌比較容易受到坐墊位置上下及前後的改變,股四 頭肌群容易受到坐墊位置前後改變的影響,股二頭肌則容易受到坐墊位置上下改變的影 響。或許未來可以參考本實驗結果針對設定要訓練的肌群進而調整適當的坐墊位置。

引用文獻

Albertus-Kajee, Y., Tucker, R., Derman, W., & Lambert, M. (2010). Alternative methods of normalising EMG during cycling. Journal of Electromyography and Kinesiology, 20(6), 1036-1043.

Ansley, L., & Cangley, P. (2009). Determinants of “optimal” cadence during cycling.

European Journal of Sport Science, 9(2), 61-85.

Bini, M. R., Hume, P. A., & Croft, J. L. (2011). Effects of bicycle saddle height on knee injury risk and cycling performance. Sports Medicine, 41(6), 463-476.

Bini, R. R., Hume, P. A., Croft, J., & Kilding, A. E. (2013). Pedal force effectiveness in cycling: a review of constraints and training effects. Journal of Science and Cycling, 2(1), 11-24.

Bini, R. R., Hume, P. A., & Kilding, A. E. (2014). Saddle height effects on pedal forces, joint mechanical work and kinematics of cyclists and triathletes. European Journal of Sport Science, 14(1), 44-52.

Bini, R. R., Hume, P. A., Lanferdini, F. J., & Vaz, M. A. (2013). Effects of moving forward or backward on the saddle on knee joint forces during cycling. Physical Therapy in Sport, 14(1), 23-27.

55

Bini, R. R., Tamborindeguy, A. C., & Mota, C. B. (2010). Effects of saddle height, pedaling cadence, and workload on joint kinetics and kinematics during cycling. Journal of Sport Rehabilitation, 19(3), 301-314.

Bressel, E. (2001). The influence of ergometer pedaling direction on peak patellofemoral joint forces. Clinical Biomechanics, 16(5), 431-437.

Caimmi, M., Carda, S., Giovanzana, C., Maini, E. S., Sabatini, A. M., Smania, N., & Molteni, F. (2008). Using kinematic analysis to evaluate constraint-induced movement therapy in chronic stroke patients. Neurorehabilitation and Neural Repair, 22(1), 31-39.

Callaghan, M. J. (2005). Lower body problems and injury in cycling. Journal of Bodywork and Movement Therapies, 9(3), 226-236.

Candotti, C. T., Ribeiro, J., Soares, D. P., De Oliveira, A. R., Loss, J. F., & GUIMARÃES, A.

C. S. (2007). Effective force and economy of triathletes and cyclists. Sports Biomechanics, 6(1), 31-43.

Diefenthaeler, F., Bini, R. R., Laitano, O. L., Guimarães, A. C. S., Nabinger, E., Carpes, F.

P., . . . Coyle, E. F. (2006). Assessment of the Effects of Saddle Position on Cyclists' Pedaling Technique. Medicine & Science in Sports & Exercise, 38(5), S181.

Dorel, S., Couturier, A., & Hug, F. (2008). Intra-session repeatability of lower limb muscles activation pattern during pedaling. Journal of Electromyography and Kinesiology, 18(5), 857-865.

Duc, S., Bertucci, W., Pernin, J., & Grappe, F. (2008). Muscular activity during uphill cycling:

effect of slope, posture, hand grip position and constrained bicycle lateral sways.

Journal of Electromyography and Kinesiology, 18(1), 116-127.

Emanuele, U., Horn, T., & Denoth, J. (2011). Influence of racing position on cycling patterns [Abstract]. Porto, Portugal: 29th International Conference on Biomechanics in Sports.

Ericson, M. (1985). On the biomechanics of cycling. A study of joint and muscle load during exercise on the bicycle ergometer. Scandinavian Journal of Rehabilitation Medicine.

Supplement, 16, 1-43.

Ericson, M. O., & Nisell, R. (1988). Efficiency of pedal forces during ergometer cycling.

International Journal of Sports Medicine, 9(02), 118-122.

Faria, E. W., Parker, D. L., & Faria, I. E. (2004). The science of cycling: factors affecting performance-part 2. Sports Medicine, 35(4), 313-337.

Faria, E. W., Parker, D. L., & Faria, I. E. (2005). The science of cycling. Sports Medicine, 35(4), 285-312.

Farina, D., Macaluso, A., Ferguson, R. A., & De Vito, G. (2004). Effect of power, pedal rate, and force on average muscle fiber conduction velocity during cycling. Journal of Applied Physiology, 97(6), 2035-2041.

Ferrer-Roca, V., Roig, A., Galilea, P., & García-López, J. (2012). Influence of saddle height on lower limb kinematics in well-trained cyclists: Static vs. dynamic evaluation in bike fitting. The Journal of Strength & Conditioning Research, 26(11), 3025-3029.

Hansen, E. A., Voigt, M., Kersting, U. G., & Madeleine, P. (2014). Frequency and pattern of rhythmic leg movement in humans after fatiguing exercises. Motor Control, 18(3), 297-309.

Holmes, J., Pruitt, A., & Whalen, N. (1994). Lower extremity overuse in bicycling. Clinics in Sports Medicine, 13(1), 187-205.

Hug, F., & Dorel, S. (2009). Electromyographic analysis of pedaling: a review. J Electromyogr Kinesiol, 19(2), 182-198.

Jorge, M., & Hull, M. (1986). Analysis of EMG measurements during bicycle pedalling.

Journal of Biomechanics, 19(9), 683-694.

KaMen, G., Robertson, D., Hamill, J., Caldwell, G., & Kamen, G. (2004). Research Methods in Biomechanics. Champaign, IL: Human Kinetics.

Laplaud, D., Hug, F., & Grélot, L. (2006). Reproducibility of eight lower limb muscles

57

Electromyography and Kinesiology, 16(2), 158-166.

Lopes, A. D., Alouche, S. R., Hakansson, N., & Cohen, M. (2014). Electromyography during pedaling on upright and recumbent ergometer. International Journal of Sports Physical Therapy, 9(1), 76.

Lu, T.-W., Yen, H.-C., & Chen, H.-L. (2008). Comparisons of the inter-joint coordination between leading and trailing limbs when crossing obstacles of different heights. Gait

& posture, 27(2), 309-315.

Lucia, A., Juan, A., Montilla, M., Canete, S., Santalla, A., Earnest, C., & Perez, M. (2004). In professional road cyclists, low pedaling cadences are less efficient. Medicine and science in sports and exercise, 36(6), 1048-1054.

MacIntosh, B. R., Neptune, R. R., & Horton, J. F. (2000). Cadence, power, and muscle activation in cycle ergometry. Medicine & Science in Sports & Exercise, 32(7), 1281-1287.

Marsh, A. P., & Martin, P. E. (1995). The relationship between cadence and lower extremity EMG in cyclists and noncyclists. Medicine & Science in Sports & Exercise, 27(2), 217-225.

Marsh, A. P., Martin, P. E., & Foley, K. O. (2000). Effect of cadence, cycling experience, and aerobic power on delta efficiency during cycling. Medicine & Science in Sports &

Exercise, 32(9), 1630-1634.

McCoy, R. W., & Gregor, R. (1989). The Effect of Varying Seat Position on Knee Loads During Cycling.: 469. Medicine & Science in Sports & Exercise, 21(2), S79.

McCrea, P. H., Eng, J. J., & Hodgson, A. J. (2002). Biomechanics of reaching: clinical implications for individuals with acquired brain injury. Disability & Rehabilitation, 24(10), 534-541.

Neptune, R., Kautz, S., & Hull, M. (1997). The effect of pedaling rate on coordination in cycling. Journal of Biomechanics, 30(10), 1051-1058.

Nordeen-Snyder, K. S. (1977). The effect of bicycle seat height variation upon oxygen consumption and lower limb kinematics. Medicine & Science in Sports & Exercise, 9(2), 113-117.

Perotto, A., & Delagi, E. F. (2005). Anatomical guide for the electromyographer: the limbs and trunk. Springfield, IL: Charles C Thomas Publisher.

Rossato, M., Bini, R., Carpes, F., Diefenthaeler, F., & Moro, A. (2008). Cadence and workload effects on pedaling technique of well-trained cyclists. International Journal of Sports Medicine, 29, 746-752.

Sanderson, D. J., & Amoroso, A. T. (2009). The influence of seat height on the mechanical function of the triceps surae muscles during steady-rate cycling. Journal of Electromyography and Kinesiology, 19(6), e465-e471.

Schwellnus M. P., & Derman, E. W. (2005). Common injuries in cycling: prevention, diagnosis and management: review article. South African Family Practice, 47(7), p. 14, 16, 18-19.

Shennum, P. L. (1976). The effect of saddle height on oxygen consumption during bicycle ergometer work. Medicine & Science in Sports & Exercise, 8(2), 119-121.

Shennum, P. L., & DeVries, H. (1975). The effect of saddle height on oxygen consumption during bicycle ergometer work. Medicine and Science in Sports, 8(2), 119-121.

Shumway-Cook, A., & Woollacott, M. H. (2001). Motor Control: Theory and Practical Applications. Philadelphia, PA: Lippincott Williams & Wilkins.

Silberman, M. R., Webner, D., Collina, S., & Shiple, B. J. (2005). Road bicycle fit. Clinical Journal of Sport Medicine, 15(4), 271-276.

Takaishi, T., Yamamoto, T., Ono, T., Ito, T., & Moritani, T. (1998). Neuromuscular, metabolic, and kinetic adaptations for skilled pedaling performance in cyclists.

Medicine & Science in Sports & Exercise, 30(3), 442-449.

59

The constrained control of force and position in multi-joint movements. Neuroscience, 46(1), 197-207.

Wakeling, J., Blake, O., & Chan, H. (2010). Muscle coordination is key to the power output and mechanical efficiency of limb movements. The Journal of Experimental Biology, 213(3), 487-492.

Whitty, A. G., Murphy, A. J., Coutts, A. J., & Watsford, M. L. (2009). Factors associated with the selection of the freely chosen cadence in non-cyclists. European Journal of Applied Physiology, 106(5), 705-712.

Wu, C.-y., Wong, M.-k., Lin, K.-c., & Chen, H.-c. (2001). Effects of task goal and personal preference on seated reaching kinematics after stroke. Stroke, 32(1), 70-76.

   

相關文件