• 沒有找到結果。

我們利用分子束磊晶結合黃光微影以及蝕刻等製程,可以製作出能精確控制其形狀、

尺寸以及位置的微米捲管元件。利用磊晶控制樣品應變雙層薄膜的材料以及厚度,我們 可以預測並經實驗來驗證捲管的直徑大小。而利用光激發螢光系統來量測磊晶樣品,則 我們可以得知樣品的發光特性。

首先針對光激發微米捲管元件,我們利用微光激發螢光系統來量測捲管光學特性,

在低溫 77K 以及室溫條件下,都能夠量測到光波在捲管管壁間全反射所產生的光學共振 模態。在本實驗中我們分別量測了懸空微米捲管,轉移至異質基板上的捲管,以及懸空 在蝕刻溝槽上的捲管,並針對其微光激發螢光量測光譜、光學共振模態,以及計算得出 的共振模態 Q 值與捲管半導體材料等效折射率等作分析,與理論預測作比較後發現微米 捲管的光學特性皆大致符合預測結果。而在室溫的條件下量測,我們更發現捲管的光學 特性已經達到了類似於雷射的條件,僅管受限於量測系統極限而無法準確求得雷射閥值,

但是可推測閥值極低或近乎為零閥值。

接著是我們所設計的橫向 PN 接面電激發捲管元件,量測並分析在不同製程條件下 樣品 PN 接面的 I-V 圖特性,找出最佳的製程條件。而在電激發捲管元件完成後,我們 再對其作光激發量測並分析,確認其光學特性仍然完好且與光激發捲管元件的量測結果 相似。

我們相信光激發捲管元件只要能夠再進一步對其作軸向的光學局限,並探討相關的 軸向模態影響,就有潛力能夠再得到更好的光學特性並達到雷射條件。而儘管電激發捲 管元件目前還無法作電激發量測,但是只要再適當改進元件的設計以及製程,我們相信 未來就能在電激發下測得捲管的光學共振模態,並進一步地往實際應用來發展。

59

參考文獻

[1] V. Ya. Prinz, et al., “Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays”, Physica E, Vol. 6, pp. 828, 2000.

[2] X. Li, “Strain induced semiconductor nanotubes-from formation process to device applications”, J. Phys. D: Appl. Phys., Vol. 41, pp. 193001, 2008.

[3] D. J. Thurmer, et al., “Process integration of microtubes for fluidic applications”, Appl.

Phys. Lett., Vol. 89, pp. 223507, 2006.

[4] A. V. Prinz and V. Y. Prinz, “Application of semiconductor micro- and nanotubes in biology”, Surf. Sci., Vol. 532, pp. 911, 2003.

[5] F. Li and Z. Mi, “Optically pumped rolled-up InGaAs/GaAs quantum dot microtube lasers”, OPTICS EXPRESS, Vol. 17, No. 22, pp.19933, 2009.

[6] Q. Song, et al. , “Near-IR subwavelength microdisk lasers”, Appl. Phys. Lett., Vol. 94, No. 6, pp. 061109, 2009.

[7] S. Ates, et al., “Coherence properties of high-beta elliptical semiconductor micropillar lasers”, Appl. Phys. Lett., Vol. 90, No. 16, pp. 161111, 2007.

[8] S. Chakravarty, P. Bhattacharya, and Z. Mi, “Electrically injected quantum-dot photonic crystal microcavity light-emitting arrays with air-bridge contacts”, IEEE Photon.

Technol. Lett., Vol. 18, No. 24, pp. 2665, 2006.

[9] S. Mendach, et al., “Light emission and wave guiding of quantum dots in a tube”, Appl.

Phys. Lett., Vol. 88, No. 11, pp. 111120, 2006.

[10] T. Kipp, et al., “Optical Modes in Semiconductor Microtube Ring Resonators”, Phys.

Rev. Lett., Vol. 96, pp. 077403, 2006.

[11] F. Li and Z. Mi, “Multi-wavelength rolled-up InGaAs/GaAs quantum dot microtube lasers”, Proc. of SPIE, Vol. 7591, pp. 75910O, 2010.

[12] V. Y. Prinz, “A new concept in fabricating building blocks for nanoelectronic and nanomechanic devices”, Microelectron. Eng., Vol. 69, No. 2-4, pp. 466, 2003.

[13] P. O. Vaccaro, K. Kubota, and T. Aida, “Strain-driven self-positioning of micromachined structures”, Appl. Phys. Lett., Vol. 78, No. 19, pp. 2852, 2001.

60

[14] C. Deneke, “Diameter scalability of rolled-up In(Ga)As/GaAs nanotubes”, Semicond.

Sci. Technol., Vol. 17, pp. 1278, 2002

[15] M. Grundmann, “Nanoscroll formation from strained layer heterostructures”, Appl.

Phys. Lett., Vol. 83, No. 12, pp. 2444, 2003.

[16] M. Hosoda and T. Shigaki, “Degeneracy breaking of optical resonance modes in rolled-up spiral microtubes”, Appl. Phys. Lett., Vol. 90, pp. 181107, 2007.

[17] F. Li, Z. Mi, and S. Vicknesh, “Coherent emission from ultrathin-walled spiral InGaAs/GaAs quantum dot microtubes”, OPTICS LETTERS, Vol. 34, No. 19, pp. 2915, 2009.

[18] Z. Mi, et al., “Self-organized InAs quantum dot tube lasers and integrated optoelectronics on Si”, Proc. of SPIE, Vol. 7943, pp. 79431C, 2011.

[19] A. B. Vorob’ev and V. Y. Prinz, “Directional rolling of strained heterofilms”, Semicond.

Sci. Technol., Vol. 17, pp. 614, 2002.

[20] K. S. R. Koteswara Rao, “Optimum Atomic Spacing for AlAs Etching in GaAs Epitaxial Lift-Off Technology”, Jpn. J. Appl. Phys., Vol. 39, pp. L 457, 2000.

[21] J. Maeda, et al., “High-Rate GaAs Epitaxial Lift-Off Technique for Optoelectronic Integrated Circuits”, Jpn. J. Appl. Phys., Vol. 36, pp. 1554, 1997.

[22] I. S. Chun and X. Li, “Controlled Assembly and Dispersion of Strain-Induced InGaAs/GaAs Nanotubes”, IEEE Trans. Nanotech., Vol. 7, pp. 493, 2008.

[23] S. Vicknesh, F. Li, and Z. Mi, “Optical microcavities on Si formed by self-assembled InGaAs/GaAs quantum dot microtubes”, Appl. Phys. Lett., Vol. 94, pp. 081101, 2009.

[24] Z. Tian, et al., “Controlled transfer of single rolled-up InGaAs-GaAs quantum-dot microtube ring resonators using optical fiber abrupt tapers”, IEEE Photon. Technol.

Lett., Vol. 22, No. 5, pp. 311, 2010.

[25] C. S. Hong, et al., “Controlled Zn diffusion for low threshold narrow stripe GaAlAs/GaAs DH lasers”, IEEE Elec. Dev. Lett., Vol. 2, No. 9, pp. 225, 1981.

61

簡歷

姓名:孫耘 (Sun, Yun) 性別:女

出生年月日:民國 77 年 2 月 23 日 籍貫:台灣省台北市

學歷:

國立交通大學電子物理系學士 (95.9~99.6) 國立交通大學電子所碩士班 (99.9~102.3)

碩士論文題目:

三五族半導體微米捲管及其光電特性研究

III-V Semiconductor Rolled-up Microtubes and Their Optoelectronic Characteristics