• 沒有找到結果。

認為,檢定變遷與未變遷區域是否具有顯著差異之計算,足以作為衡量土地利用 型態轉變與溫度變化關係之實證方法。

重劃區之熱島效應變遷分析結果中,本研究比較選定之七個重劃區,其平均 熱島效應強度與整體 UHII 數據,結果顯示 2003 至 2009 年為一轉折時期,2003 年以前僅有幾個重劃區高於全區 UHII,高於平均的幅度也不大,但 2009 年之後 則是大部分高於全區 UHII,且有增加趨勢,此亦呼應前述 NDVI 與 NDBI 指標迴 歸分析中的係數結果,也再再顯示台中地區土地利用型態對整體區域溫度的影響,

近年來人為開發的影響力比重越來越多。

由於重劃區屬於人為規劃的土地開發案,土地利用型態上形成較集中、大面 積範圍的變化,本研究藉由 ANOVA 分析實證植被與建成地、裸露地之轉變,其 所帶來之溫度改變具有顯著影響;因此,在整體都市規劃與土地開發上,政府需 要更有遠見地規劃、投入,而大肚台地上裸露地與植被更迭的現象,更應該在土 壤保育上研擬對策,以減低地表溫度上升所造成之熱島效應加劇情形。

本研究使用 Landsat 衛星影像,受限於空間解析度,無法針對更細部的土地 利用型態改變作分析,雖然本研究做出較長時間的時空分析比較,但早期影像分 類結果,找無地真資料予以檢核,僅能檢驗後三期影像,前三期影像判釋無法以 檢核結果增加其可信度,實屬可惜;而時間尺度的拉長,也讓研究資料在前後期 影像對應上有精度問題;在選擇可用與否的影像時,亦受限於雲覆、取像時間,

而無法以等分方式劃分時間區間,未來若要進行類似研究,可視研究設計選擇其 他取像週期更短之衛星更佳。

參考文獻

國文化大學建築及都市設計研究所碩士論文。

研究〉,《水土保持學報》,40(3),315-327。

邱仁德、徐逸翔(2018):〈應用 Landsat-8 影像探討臺中市新社花海節對地區溫 度變化之影響〉,《航測及遙測學刊》,23(1),25-42。

孫振義、簡子翔(2016):〈夏季臺北都會區熱島效應之研究〉,《都市與計畫》,

43(4),437-462。

張子瑩、劉說安(2005):〈利用 LANDSAT 資訊反演大氣溫度以評估熱島效應之強 度〉,《航測及遙測學刊》,10(4),385-392。

覃志豪、Zhang, M.、Arnon K.與 Pedro, B.(2001):〈用陆地卫星 TM6 数据演算地 表温度的单窗算法〉,《地理学报》,56(4),456-466。

鄒克萬、黃書偉(2007):〈都市土地利用變遷對自然環境衝擊之空間影響分析〉,

《地理學報》,48,1-18。

賴進貴、葉高華、王韋力(2004):〈土地利用變遷與空間相依性之探討以臺北盆 地聚落變遷為例〉,《台灣地理資訊學刊》,1,29-40。

閻克勤、蔡宜穎、紀思寧(2014):〈影響桃園市陂塘土地利用變遷因素之研究〉,

《建築與規劃學報》,15(2/3),193-214。

顏啟峯、張國楨(2015):〈基隆河土地覆蓋時空變遷分析,以第二次截彎取直計

Aboelnour, M. & Engel, B. A. (2018): Application of Remote Sensing Techniques and Geographic Information Systems to Analyze Land Surface Temperature in Response to Land Use/Land Cover Change in Greater Cairo Region, Egypt. Journal of Geographic Information System, 10(1): 57-88.

Ahmed, S. (2018): Assessment of urban heat islands and impact of climate change on socioeconomic over Suez Governorate using remote sensing and GIS techniques.

The Egyptian Journal of Remote Sensing and Space Sciences, 21: 15-25.

Ahmed, S. (2018): Assessment of urban heat islands and impact of climate change on socioeconomic over Suez Governorate using remote sensing and GIS techniques.

The Egyptian Journal of Remote Sensing and Space Sciences, 21: 15-25.

Akinyemi, F. O. (2017): Land change in the central Albertine rift: Insights from analysis and mapping of land use-land cover change in north-western Rwanda. Applied Geography, 87: 127-138.

Alhawiti, R. H. & Mitsova, D. (2016): Using Landsat-8 data to explore the correlation between urban heat island and urban land uses. International Journal of Research in Engineering and Technology, 5(3): 457-466.

Alves, E. & Lopes, A. (2017): The Urban Heat Island Effect and the Role of Vegetation to Address the Negative Impacts of Local Climate Changes in a Small Brazilian City.

Atmosphere, 8: 1-14.

Avdan, U. & Jovanovska, G. (2016): Algorithm for Automated Mapping of Land Surface Temperature Using LANDSAT 8 Satellite Data. Journal of Sensors, 2016(2): 1-8.

Butt, A., Shabbir, R., Ahmad, S. S. & Aziz, N. (2015): Land use change mapping and analysis using Remote Sensing and GIS: A case study of Simly watershed, Islamabad, Pakistan. The Egyptian Journal of Remote Sensing and Space Science, 18(2): 251-259.

Chang, H. T. (2016): A Temporal and Spatial Analysis of Urban Heat Island in Basin City Utilizing Remote Sensing Techniques. Paper presented at the XXIII International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B2: 165-170.

Emmanuel, M. R. (2005): An Urban Approach to Climate-sensitive Design: Strategies for the Tropics. England: Taylor & Francis.

Faridatul, M. I. (2017): Spatiotemporal Effects of Land Use and River Morphological Change on the Microclimate of Rajshahi Metropolitan Area. Journal of Geographic Information System, 9(4): 466-481.

Getis, A. & Ord, J.K. (1992): The analysis of spatial association by use of distance

statistics. Geographical Analysis, 24(3): 189-206.

Grigoraș, G., & Urițescu, B. (2018): Spatial Hotspot Analysis of Bucharest’s Urban Heat Island (UHI) Using Modis Data. Annals of Valahia University of Targoviste, Geographical Series, 18(1): 14-22.

Harris, P.M. & Ventura, S.J. (1995): The integration of geographic data with remotely sensed imagery to improve classification in an urban area. Photogrammetric Engineering and Remote Sensing, 61(8): 993–998.

Howard, L. (1818): The Climate of London: Deduced from Meteorological Observations, Made at Different Places in the Neighborhood of the Metropolis (Vol.1). England, London: Phillips, W.

Ioannis, M. & Meliadis, M. (2011): Multi-temporal Landsat image classification and change analysis of land cover/use in the Prefecture of Thessaloiniki, Greece.

Proceedings of the International Academy of Ecology and Environmental Sciences, 1(1): 15-25.

Jafari, E., Soltanifard, H., Aliabadi, K. & Karachi, H. (2017): Assessment of the Effect of Neyshabur Green Spatial Configuration on the Temperature of Land Surface and Heat Islands. Open Journal of Ecology, 7(9): 554-567.

Jimenez-Munoz, J. & Sobrino, J. (2003): A generalized single-channel method for retrieving land surface temperature from remote sensing data. Journal of Geophysical Research, 108.

Jimenez-Munoz, J., Sobrino, J., Skokovic, D., Mattar, C. & Cristobal Rossello, J. (2014):

Land Surface Temperature Retrieval Methods From Landsat-8 Thermal Infrared Sensor Data. IEEE Geoscience and Remote Sensing Letters, 11(10): 1840-1843.

Khandelwal, S., Goyal, R., Kaul, N. & Mathew, A. (2018): Assessment of land surface temperature variation due to change in elevation of area surrounding Jaipur, India.

The Egyptian Journal of Remote Sensing and Space Science, 21: 87-94.

Linke, F. (1940): Das Klima der Groszstadt. Biologie der Groszstadt, 75-90.

Liu, L. & Zhang, Y. (2011): Urban Heat Island Analysis Using the Landsat TM Data and ASTER Data: A Case Study in Hong Kong. Remote Sensing, 3(7): 1535-1552.

Manley, G. (1958): On the frequency of snowfall in metropolitan England. Quarterly Journal of the Royal Meteorological Society, 84: 70-72.

Mavrakou, T., Polydoros, A., Cartalis, C. & Santamouris, M. (2018): Recognition of Thermal Hot and Cold Spots in Urban Areas in Support of Mitigation Plans to Counteract Overheating: Application for Athens. Climate 2018, 6(1): 16.

Mehmood, R., Butt, M. A., Mahmood, S. A. & Ali, F. (2017): Appraisal of Urban Heat Island and Its Impacts on Environment Using Landsat TM in Peshawar, Pakistan.

Advances in Remote Sensing, 6(3): 192-200.

Mohan, M., Kikegawa, Y., Gurjar, B. R., Bhati, S., Kandya, A. & Ogawa, K. (2012): Urban Heat Island Assessment for a Tropical Urban Airshed in India. Atmospheric and Climate Sciences, 2(2): 127-138.

Navarro-Estupiñan, J., Morua, A., Díaz-Caravantes, R. & Vivoni, E. (2020): Heat risk mapping through spatial analysis of remotely-sensed data and socioeconomic vulnerability in Hermosillo, México. Urban Climate, 31: 100576.

Nzoiwu, C. P., Agulue, E. I., Mbah, S. & Igboanugo, C. P. (2017): Impact of Land Use/Land Cover Change on Surface Temperature Condition of Awka Town, Nigeria. Journal of Geographic Information System, 9(6): 7633-776.

Oke, T. R. (1973): City size and the urban heat island. Atmospheric Environment Pergamon Press, 7: 769-779.

Pandey, P., Kumar, D., Prakash, A., Masih, J., Singh, M., Kumar. S., Jain, V. K. & Kumar, K.

(2012): A study of urban heat island and its association with particulate matter during winter months over Delhi. Science of the Total Environment, 414(1): 494-507.

Qin, Z., Karnieli, A. & Berliner, P. (2010): A Mono-Window Algorithm for Retrieving Land Surface Temperature from Landsat TM data and its Application to the Israel-Egypt Border Region. International Journal of Remote Sensing, 22(18): 3719-3746.

Rhinane, H., Hilali, A., Bahi, H. & Berrada, A. (2012): Contribution of Landsat TM Data for the Detection of Urban Heat Islands Areas Case of Casablanca. Journal of Geographic Information System, 4(1): 20-26.

Sobrino, J. A., Jime´nez-Mun˜oza, J. C. & Paolini, L. (2004): Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment, 90: 434-440.

Tran, D. X., Pla, F., Latorre-Carmona, P., Myint, S., Caetano, M., & Kieu, H. V. (2017):

Characterizing the relationship between land use land cover change and land surface temperature. ISPRS Journal of Photogrammetry and Remote Sensing, 124:

119-132.

Tsou, J., Zhuang, J., Li, Y., & Zhang, Y. (2017): Urban Heat Island Assessment Using the Landsat 8 Data: A Case Study in Shenzhen and Hong Kong. Urban Science, 1(1): 1-10.

Vicente-Serrano, S. M., Cuadrat-Prats, J. M. & Saz-Sánchez, M. A. (2005): Spatial patterns of the urban heat island in Zaragoza (Spain). Climate Research, 30(1): 61-69.

Wazir, Z. A. (2017). The correlation of urban heat island in tropical middle-class housing.

AIP Conference Proceedings, 1903(1): 1-11.

Xiong, Y., Huang, S. Chen, F., Ye, H., Wang, C. & Zhu, C. (2012): The Impacts of Rapid Urbanization on the Thermal Environment: A Remote Sensing Study of Guangzhou, South China. Remote Sensing, 4(7): 2033-2056.

Yu, W., Zang, S., Wu C., Liu, W. & Na, X. (2011): Analyzing and modeling land use land cover change (LUCC) in the Daqing City, China. Applied Geography, 31(2): 600-608.

Yue, W., Xu, J., Tan, W. & Xu, L. (2007): The relationship between land surface

temperature and NDVI with remote sensing: application to Shanghai Landsat 7 ETM+ data. International Journal of Remote Sensing, 28(15): 3205-3226.

Zha, Y., Gao, J. & NI, S. (2003): Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24(3): 583-594.

Zhang, Y., Chen, Y., Qing, D. & Jiang, P. (2012): Study on Urban Heat Island Effect Based on Normalized Difference Vegetated Index: A Case Study of Wuhan City. Procedia Environmental Sciences, 13: 574–581.

Zhao, X., Huang, J., Ye, H., Wang, K. & Qiu, Q. (2010): Spatiotemporal changes of the urban heat island of a coastal city in the context of urbanization. International Journal of Sustainable Development & World Ecology, 17(4): 311-316.

相關文件