• 沒有找到結果。

結論與建議

本研究為連結巨觀與微觀之車流模式,並且考慮小客車與機車互動行為與多車道 之影響。顧慮到靠近號誌路口,車流之行為較為複雜,需要以微觀模式討論之;路段 則以巨觀模式處理在國內機車數量眾多,其車流不可被忽視。而在模式中未處理其體 積小且能變換車道之行為進行處理。以下為本研究所得出之結論與建議。

6.1 結論

1. 巨觀車流與微觀車流理論有各自之優劣,巨觀車流模式可以有效率地描述車 流之特性,卻無法得知詳細的資訊;微觀車流模式則可以呈現每一輛車於道 路上之刺激與反應,卻相對執行上較無效率。在市區道路上明顯為干擾車流 為主,路口的轉向及號誌導致車輛行為複雜,而上游路段則干擾較少,故將 兩者結合對於模擬市區道路有所幫助。本研究之模式能夠順利傳遞巨觀與微 觀之訊息傳遞,轉換車流與車輛。

2. 為探討機車車流行為與多車道環境,本研究考慮車道間之變換率、車種之間 相互干擾的條件擁擠密度與條件自由車流速率、機車與小客車之不同效用來 解釋國內特有的機車混合車流。

3. 本研究利用模擬資料測試模式之運作情形,其結果呈現出衝擊波之擴散與混 合車流和均質車流的表現差異。並蒐集實際市區道路車流資料,將其整理並 從中推估出相關模式參數,使模式更加完整。

4. 於模式結果中,微觀模式描述接近號誌路口之路段,其干擾程度相較大,根 據與實際車流資料做比對,可發現機車車流所受影響相較於小客車嚴重。

5. 將實際車流資料代入模式中計算,並觀察巨觀與微觀之間連結。可觀察到不 同觀測點下所測得之車流流量變化,以對稱平均絕對誤差百分比做為確認模 式準確性之準則,認為介面設位置不應太過接近路口,在車輛受到干擾之前 就轉換成微觀模式處理。而就時間效率而言,除非介面設置過於極端,否則 時間效率上之好壞並不顯著。

67

6.2 建議

1. 本研究主要探討包含機車與小車之混合車流,並未考慮到其他車種,如巴士等大 型車輛。未來之研究可以將額外之車種納入,能夠更符合國內市區道路之車流特 性。

2. 本研究針對路段至路口之車流情形,當車輛經過停止線則離開實驗路段。故沒有 辦法呈現路口中車流行為與路口至路段的反向操作,未來研究可以考慮將研究規 模擴大,以反應國內路網之特性。

3. 本研究假設混合車流之間互動干擾關係為線性,儘管可以描述機車之彈性,但仍 有其幅度的限制,未來研究可以考慮以不同的假設關係進行探討,並比較其優劣。

4. 本研究儘管對於巨微觀之轉換介面設置位置分析及討論,但尚無針對最佳化界面 位置求取最佳解,抑或是建立可移動之轉換介面。未來研究可以將介面點設置問 題進行研究,並找出最佳之設置位置。

5. 本研究納入跟車模式以模化微觀車流,然而就有之研究均探討於長且無干擾之車 道上車輛行為,並無法確切呈現因路口所影響之特殊行為,例如右轉或左轉車道 車流、機車停等區。車輛並非因為單純密度大小而決定是否要變換車道,而是轉 向需要而產生。路口對於機車車流影響尚有許多因素未納入考慮,未來研究可以 對於鄰近路口建立其車流模式來描述車流。

68

參考文獻

 謝志偉(2010),「混合車流格位傳遞模式之建立與驗證」,國立交通大學交通運輸 研究所,碩士論文。

 李建豪(2012),「市區幹道機車超車行為路徑選擇決策模式」,國立台灣大學土木 系,碩士論文。

 Bourrel, E. & Lesort, J. B. (2003) Mixing micro and macro representations of traffic flow a hybrid model based on the LWR theory. Transportation Research Record:

Journal of the Transportation Research Board, 1852, 193-200.

 Cho, H. J. & Lo, S. J. (2002) Modeling self-consistent multi-class dynamic traffic flow.

Physica A, 312. 342-362.

 Colombo, R. M. (2002) A 2 × 2 hyperbolic traffic flow model. Mathematical and Computer Modeling. 35. 683-688.

 Daganzo, C. F. (1995) Requiem for second order fluid approximations of traffic flow.

Transportation Research Part B: Methodological, 4, 277-286.

 Daganzo, C. F. (1997) A continuum theory of traffic dynamics for freeways with special lanes. Transportation Research Part B: Methodological, 31. 83-102.

 Daganzo, C. F. & Laval, J. A. (2006) Lane changing in traffic streams. Transportation Research Part B: Methodological, 40. 251-264.

 Gavage, S. B. & Colombo, R. M. (2003) An n-populations traffic flow model for traffic flow. European Journal of Applied Mathematics, 14. 587-612.

 Gazis, D. C., Herman R. & Weiss G. H. (1962) Density oscillations between lanes of a multilane highway. Operations Research, 10. 658-667.

 Gupta, A. K. & Katiyar, V. K. (2007) A new multi class continuum model for traffic flow. Transportmetrica, 3. 73-85.

 Helbing, D. (1997) Modeling multi-lane traffic flow with queuing effects. Physica A, 242. 175-194.

 Helbing, D. (1998) From microscopic to macroscopic traffic models. A Perspective Look at Nonlinear Media, 503. 122-139.

 Helbing, D. & Tilch, B. (1998) Generalized force model of traffic dynamics. Physical

69

Review E, 58. 133-138.

 Hoogendoorn, S. P. & Bovy, P. H. L. (2000) Continuum modeling of multiclass traffic flow. Transportation Research Part B: Methodological, 34. 123-146.

 Jiang R., Wu, Q. & Zhu Z. (2001) Full velocity difference model for a car following theory. Physical Review E, 64. 017101.

 Jin, W. L. (2010) A kinematic wave theory of lane-changing traffic flow.

Transportation Research Part B: Methodological, 44. 1001–1021.

 Leclercq, L. & Moutari, S. (2007) Hybridization of a class of second order models of traffic flow. Simulation Modeling Practice and Theory, 15. 918-934.

 Lan, L. W., Chiou Y. C., Lin Z. S. & Hsu C. C. (2010) Cellular automaton simulations for mixed traffic with erratic motorcycles' behaviours. Physica A, 389. 2077-2089.

 Leclercq, L. (2007) Hybrid approaches to the solutions of the Lighthill Whitham Richards model. Transportation Research Part B: Methodological, 41. 701-709.

 Lee, T. C., Polak J. W. & Bell M. G. H.(2009) New approach to modeling mixed traffic containing motorcycles in urban areas. Transportation Research Record: Journal of the Transportation Research Board, 2140. 195-205.

 Logghe, S. & Immers, L. H. (2008) Multi-class kinematic wave theory of traffic flow.

Transportation Research Part B: Methodological, 42. 523-541.

 Meng, J. P., Dai S., Dong L. & Zhang J. (2007) Cellular automaton model for mixed traffic flow with motorcycles. Physica A, 380 470-480.

 Minh, C. C., Sano K. & Matsumoto S. (2005) The speed, flow and headway analyses of motorcycle traffic. Journal of the Eastern Asia Society for Transportation Studies, 6.

1496-1508.

 Newell, G. F. (1998) A moving bottleneck. Transportation Research Part B:

Methodological, 32. 531-537.

 Ngoduy, D. (2011) Multiclass first-order traffic model using stochastic fundamental diagrams. Transportmetrica, 7. 111-125.

 Wanger, C., Hoffmann C., Sollacher R., Wagenhuber J. & Schurmann B. (1996) Second-order continuum traffic flow model. Physical Review E, 54, 5073-5085.

 Wong, G. C. & Wong, S. C. (2002) A multi-class traffic flow model an extension of

70

LWR model with heterogeneous drivers. Transportation Research Part A: Policy and Practice, 36. 827-841.

 Zhang, H. M. & Jin, W. L. (2002) A kinematic wave traffic flow model for mixed traffic. Transportation Research Record: Journal of the Transportation Research Board, 1802. 197-204.

 Zhang, H. M. (1998) A theory of nonequilibrium traffic flow. Transportation Research Part B: Methodological, 32. 485-498.

 Zhang, H. M. (2003) Anisotropic property revisited––does it hold in multi-lane traffic?

Transportation Research Part B: Methodological, 37. 561-577.

 Zhang, P. & Wong, S. C. (2006) Essence of conservation forms in the traveling wave solutions of higher-order traffic flow models. Physical Review E, 74. 026109.

相關文件