• 沒有找到結果。

5-1 結論

本研究第一部份係以均相催化系統(Co

2+

/PMS)處理 AB1 染料,並鑑定各 反應之中間產物及探討其可能的反應機構與路徑;第二部份為以不同水熱方 法合成奈米級Bi

2

WO

6

觸媒,於UV/Bi

2

WO

6

非均相催化系統下處理CV 染 料,並探討各Bi

2

WO

6

觸媒之材料特性與降解CV 染料效率之差異,並鑑定 其反應之中間產物及探討其可能的反應機構與路徑。

1. 在 Co

2+

/PMS 系統催化下反應速率隨著[Co

2+

]與[PMS]之濃度增加而增加。

2. 本研究亦成功鑑別以 Co

2+

/PMS 系統催化降解 AB1 染料在 50 分鐘的層析 時間內成功找到9 個中間產物。 並顯示在 35-50 分鐘時之 HPLC 層析圖 無任何紫外光吸收,表示其無雙鍵、極性又小,由質譜圖並判別出質量

較大,由此可判斷此可能為長鏈結構的巨大有機分子。而在滯留時間5

分鐘以內之的化合物,表示其極性大;其質譜圖亦顯示斷裂碎片均為高 分子量,且並無UV 吸收,判斷可能為磺酸化烷烴類的中間產物。

3. 本研究成功以 Autoclave 水熱法、微波水熱法及傳統水熱法,製成 Bi

2

WO

6

觸媒。實驗結果以Autoclave 水熱法合成之 Bi

2

WO

6

觸媒光催化降解CV 染料之效率最佳,在48 小時即可達到 98%的降解效果。

4. 經 FE-SEM 圖發現,以不同水熱合成方法合成之 Bi

2

WO

6

之形貌包括粉狀 顆粒、片狀、薄片層狀堆疊類似花瓣狀之結構。

5. HRXPS 圖譜中並在 Bi

2

WO

6

皆可發現在BE (Bi 4f

7/2

)=156.4 eV 處出現另 一自旋軌域的雙吸收峯。推測此可能部分的氧產生空缺而導致部份的Bi 存在(+3-x)的價態,並導致往層狀結構發展。

6. 三種不同水熱合成方法其 XPS 之 Bi 4f 圖譜中,顯示 CH 系列之樣品均 Bi

3+

之特性吸收峰的強度較Bi

(+3-x)

高,表示層狀結構並不明顯;MH 系列 之樣品則以Bi

(+3-x)

為主,顯示此時 Bi 存在的化學環境多為 Bi

2

O

2

layer 的層狀結構;而AH 系列之樣品則隨反應時間增加,Bi

3+

與Bi

(+3-x)

之特徵 峰呈現此消彼長,終至72 小時,兩者接近相等。其結構分佈可與 FE-SEM 圖相互呼應。

7. BET 比表面積由大至小依序為 AH 系列(34.9436~50.1481 m

2

/g) > MH 系 列(14.1823~ 23.2437m

2

/g) > CH 系列(平均 1.3999~4.0970 m

2

/g),結果可證 明利用Autoclave 水熱合成方法可製備出顆粒細小並具有比表面積較大 的Bi

2

WO

6

奈米晶體。

8. 傳統水熱法反應時間在 48 小時和 72 小時之 Bi

2

WO

6

樣品具有類似的 特徵峰,強度並隨反應時間增長而增加,顯示結晶度趨於成熟;CH 24 樣品,推測其可能為Bi

2

O

3

與Bi

14

WO

24

之混和晶相,而並與以EDS 測得 之W/Bi 原子比例 0.04-0.021,即與化學劑量比(W : Bi = 1:14) 相符。

9. MH 0.5 和 MH 1 之 Bi

2

WO

6

具有類似的特徵峰及強度,但反應時間增長 至1.5 小時,繞射峰的強度即減弱,但仍保持一定的結晶性,而 MH 0.25 之XRD 圖譜僅於 2θ 等於 25.3 處出現單一繞射峰,明顯異於 Bi

2

WO

6

之 特徵峰,目前仍為未知之晶相。

10. AH 24 樣品之 Bi/W 原子比例為 6.90,在 XRD 圖譜上顯示出不同之繞射 峰,經比對後推論AH 24 樣品可能由 Bi

14

W

2

O

27

及Bi

2

WO

6

所組成。

11. Bi

2

WO

6

/UV 去除 CV 程序之反應中間產物,共 19 種(A-J、a-f 與 α-γ)。

12. 推測主要可能之反應機構為發色基團之(1)去甲基化(N-de-methylated)與 (2)分裂發色基團之共振結構(Cleavage of conjugated chromophore

structure)

13. 晶體的表面形態會影響反應機構。

14. CV 染料之 pH 值對反應機構之影響無顯著差異。

5-2 未來方向與建議

1. 發展層析方法,進一步鑑定出 Co

2+

/PMS 系統降解 AB1 染料之未知中間 產物。

2. 以 Co

2+

/PMS 系統降解其他有機污染物。

3. 以 Phosphate buffer 調控 pH 值,尋找最適化條件。

4. 以 Bi

2

WO

6

觸媒照射可見光降解CV 染料,探討其效率與反應機構。

5. 研究不同高級氧化程序處裡 CV 染料,其可能的反應機構與路徑。

6. 探討不同染料與染料混合廢水,其可能的反應機構。

建議未來可設計連續流之UV/ Bi

2

WO

6

光催化反應系統。

 

參考文獻

1. H., Z., Color chemistry: syntheses, properties, and applications of organic dyes and pigments. J. Phys. Chem. A:Chemistry., 1992. 67,385-386.

2. Kayan, B., et al., Degradation of acid red 97 dye in aqueous medium using wet oxidation and electro-Fenton techniques. Journal of Hazardous

Materials, 2010. 177(1-3),95-102.

3. Hsing, H.-J., et al., The decolorization and mineralization of Acid Orange 6 azo dye in aqueous solution by advanced oxidation processes: A

comparative study. Journal of Hazardous Materials, 2007. 141(1),8-16.

4. Kang, S.-F., C.-H. Liao, and S.-T. Po, Decolorization of textile wastewater by photo-fenton oxidation technology. Chemosphere, 2000. 41(8),

1287-1294.

5. Baptista, M.S. and G.L. Indig, Effect of BSA Binding on Photophysical and Photochemical Properties of Triarylmethane Dyes. The Journal of

Physical Chemistry B, 1998. 102(23), 4678-4688.

6. CHO, et al., Synthesis and characterization of N-demethylated metabolites of malachite green and leucomalachite green. Vol. 16. 2003, Washington, DC, ETATS-UNIS: American Chemical Society. 10.

7. Zhu, W., Z. Yang, and L. Wang, Application of ferrous-hydrogen peroxide for the treatment of H-acid manufacturing process wastewater. Water

Research, 1996. 30(12), 2949-2954.

8. Hessel, C., et al., Guidelines and legislation for dye house effluents.

Journal of Environmental Management, 2007. 83(2), 171-180.

9. 張友諒, 利用費頓試劑來氧化 Reactive Black 5 染料的可行性及動力 學之研究. 碩士論文, 2005. 國立高雄師範大學化學系(高雄).

10. Sasaki, Y.F., et al., The comet assay with 8 mouse organs: results with 39 currently used food additives. Mutation Research/Genetic Toxicology and

Environmental Mutagenesis, 2002. 519(1-2), 103-119.

11. Srivastava, S., R. Sinha, and D. Roy, Toxicological effects of malachite green. Aquatic Toxicology, 2004. 66(3), 319-329.

12. U.C., A.W.S.R.K.B., Biodegradation of triphenylmethane dyes. Enzyme

and Microbial Technology, 1998. 22, 185-191.

13. Gessner, T. and U. Mayer, Triarylmethane and Diarylmethane Dyes.

Ullmann's Encyclopedia of Industrial Chemistry. 2000: Wiley-VCH

Verlag GmbH & Co. KGaA.

ozonation and coagulation processes. Dyes and Pigments, 2005. 64(3), 217-222.

15. Kobya, M., O.T. Can, and M. Bayramoglu, Treatment of textile

wastewaters by electrocoagulation using iron and aluminum electrodes.

Journal of Hazardous Materials, 2003. 100(1-3), 163-178.

16. An, H., et al., Biological treatment of dye wastewaters using an anaerobic-oxic system. Chemosphere, 1996. 33(12), 2533-2542.

17. Alinsafi, A., et al., Effect of variability on the treatment of textile dyeing wastewater by activated sludge. Dyes and Pigments, 2006. 69(1-2): p.

31-39.

18. Walker, G.M. and L.R. Weatherley, Adsorption of acid dyes on to granular activated carbon in fixed beds. Water Research, 1997. 31(8), 2093-2101.

19. Namasivayam, C. and D.J.S.E. Arasi, Removal of congo red from

wastewater by adsorption onto waste red mud. Chemosphere, 1997. 34(2), 401-417.

20. Wang, J., et al., Adsorption Characteristics of Dye onto Sludge Particulates. Journal of Colloid and Interface Science, 1998. 208(2), 518-528.

21. Mittal, A., V. Gajbe, and J. Mittal, Removal and recovery of hazardous triphenylmethane dye, Methyl Violet through adsorption over granulated waste materials. Journal of Hazardous Materials, 2008. 150(2), 364-375.

22. Sani, R.K. and U.C. Banerjee, Decolorization of triphenylmethane dyes and textile and dye-stuff effluent by Kurthia sp. Enzyme and Microbial

Technology, 1999. 24(7), 433-437.

23. Robinson, T., et al., Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative.

Bioresource Technology, 2001. 77(3), 247-255.

24. Gültekin, I. and N.H. Ince, Synthetic endocrine disruptors in the environment and water remediation by advanced oxidation processes.

Journal of Environmental Management, 2007. 85(4), 816-832.

25. Popiel, S., Z. Witkiewicz, and M. Chrzanowski, Sulfur mustard

destruction using ozone, UV, hydrogen peroxide and their combination.

Journal of Hazardous Materials, 2008. 153(1-2), 37-43.

26. Borghei, S.M. and S.N. Hosseini, Comparison of furfural degradation by different photooxidation methods. Chemical Engineering Journal, 2008.

139(3), 482-488.

27. Mrowetz, M., C. Pirola, and E. Selli, Degradation of organic water

pollutants through sonophotocatalysis in the presence of TiO2.

Ultrasonics Sonochemistry, 2003. 10(4-5), 247-254.

28. 陳曉暘;薛智勇;吳丹;王衛平;朱鳳香;吳傳珍, 基於硫酸自由基的高級 氧化技術及其在水處理中的應用

. 水處理技術, 2009. 5, 16-20.

29. Block, P.B., RA; Robinson, D. , Novel Activation Technologies for Sodium Persulfate In Situ Chemical Oxidation. In Proceedings of the

Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds 2004.

30. Salari, D., et al., The photooxidative destruction of C.I. Basic Yellow 2 using UV/S

2

O

8 2-

process in a rectangular continuous photoreactor. Journal

of Hazardous Materials, 2009. 166(1), 61-66.

31. Ball, D.L. and J.O. Edwards, The Kinetics and Mechanism of the Decomposition of Caro's Acid. I. Journal of the American Chemical

Society, 1956. 78(6), 1125-1129.

32. Chen, X., et al., Kinetics of oxidative decolorization and mineralization of Acid Orange 7 by dark and photoassisted Co

2+

-catalyzed

peroxymonosulfate system. Chemosphere, 2007. 67(4), 802-808.

33. Fernandez, J., P. Maruthamuthu, and J. Kiwi, Photobleaching and mineralization of Orange II by oxone and metal-ions involving

Fenton-like chemistry under visible light. Journal of Photochemistry and

Photobiology A: Chemistry, 2004. 161(2-3), 185-192.

34. Fernandez, J., et al., Bleaching and photobleaching of Orange II within seconds by the oxone/Co

2+

reagent in Fenton-like processes. Applied

Catalysis B: Environmental, 2004. 49(3), 207-215.

35. Kim, J. and J.O. Edwards, A study of cobalt catalysis and copper modification in the coupled decompositions of hydrogen peroxide and peroxomonosulfate ion. Inorganica Chimica Acta, 1995. 235(1-2), 9-13.

36. Bianco Prevot, A., et al., Photocatalytic Degradation of Acid Blue 80 in Aqueous Solutions Containing TiO2 Suspensions. Environmental Science

& Technology, 2001. 35(5), 971-976.

37. Yu, J., et al., Hydrothermal preparation and visible-light photocatalytic activity of Bi

2

WO

6

powders. Journal of Solid State Chemistry, 2005.

178(6), 1968-1972.

38. KIM, D.Y., et al., Synthesis of Bi

2

WO

6

Nanometer Sheet Shaped and Approach to the Photocatalysis. Vol. 30. 2009, Seoul, COREE, REPUBLIQUE DE: Korean Chemical Society. 6.

morphology via microwave-assisted solvothermal synthesis. Catalysis

Today, 2008. 131(1-4), 15-20.

40. Finlayson, A.P., et al., Evaluation of Bi–W-oxides for visible light photocatalysis. physica status solidi (a), 2006. 203(2), 327-335.

41. Alfaro, S.O. and A. Martínez-de la Cruz, Synthesis, characterization and visible-light photocatalytic properties of Bi

2

WO

6

and Bi

2

W

2

O

9

obtained by co-precipitation method. Applied Catalysis A: General, 2010. 383(1-2), 128-133.

42. Xu, Q.C., et al., Synthesis of Porous and Visible-Light Absorbing

Bi

2

WO

6

/TiO

2

Heterojunction Films with Improved Photoelectrochemical and Photocatalytic Performances. The Journal of Physical Chemistry C,

2011. 115(15), 7419-7428.

43. KUDO A, H.S.,

H 2 or O 2 Evolution from Aqueous Solutions on Layered

Oxide Photocatalysts Consisting of Bi

3+

with 6s

2

Configuration and d

0

Transition Metal Ions. Chem Lett, 1999. 10, 1103-1104.

44. Tang, J., Z. Zou, and J. Ye, Photocatalytic Decomposition of Organic Contaminants by Bi

2

WO

6

Under Visible Light Irradiation. Catalysis

Letters, 2004. 92(1), 53-56.

45. Amano, F., et al., Preparation and Characterization of Bismuth Tungstate Polycrystalline Flake-Ball Particles for Photocatalytic Reactions. The

Journal of Physical Chemistry C, 2008. 112(25), 9320-9326.

46. Liu, S. and J. Yu, Cooperative self-construction and enhanced optical absorption of nanoplates-assembled hierarchical Bi

2

WO

6

flowers. Journal

of Solid State Chemistry, 2008. 181(5), 1048-1055.

47. Wu, J., et al., Synthesis of Bi

2

WO

6

Nanoplate-Built Hierarchical Nest-like Structures with Visible-Light-Induced Photocatalytic Activity. The Journal

of Physical Chemistry C, 2007. 111(34), 12866-12871.

48. 謝安建, 章.李.沈., 花狀納米 Bi

2

WO

6

的製備及可見光催化性能研究 中國科技論文在線, 2010.

49. Morey, G.W., Hydrothermal Synthesis. Journal of the American Ceramic

Society, 1953. 36(9), 279-285.

50. 黃啟倫, 以水熱法合成

Mn-α-alumina/mullite/silica 粉體殼核結構 碩

士論文, 2006. 國立成功大學 (台南).

51. Chen, C.-C., et al., Photooxidative N-de-ethylation of anionic

triarylmethane dye (sulfan blue) in titanium dioxide dispersions under UV irradiation. Journal of Hazardous Materials, 2006. 137(3), 1600-1607.

52. Ling, S.K., S. Wang, and Y. Peng, Oxidative degradation of dyes in water

using Co

2+

/H

2

O

2

and Co

2+

/peroxymonosulfate. Journal of Hazardous

Materials, 2010. 178(1-3), 385-389.

53. Huang, Y.-H., et al., Efficient decolorization of azo dye Reactive Black B involving aromatic fragment degradation in buffered Co

2+

/PMS oxidative processes with a ppb level dosage of Co

2+

-catalyst. Journal of Hazardous

Materials, 2009. 170(2-3), 1110-1118.

54. Anipsitakis, G.P., T.P. Tufano, and D.D. Dionysiou, Chemical and microbial decontamination of pool water using activated potassium peroxymonosulfate. Water Research, 2008. 42(12), 2899-2910.

55. Huang, Y.-F. and Y.-H. Huang, Behavioral evidence of the dominant radicals and intermediates involved in Bisphenol A degradation using an efficient Co

2+

/PMS oxidation process. Journal of Hazardous Materials,

2009. 167(1-3), 418-426.

56. Çimen, Y. and H. Türk, Oxidation of 2,3,6-trimethylphenol with

potassium peroxymonosulfate catalyzed by iron and cobalt phthalocyanine tetrasulfonates in a methanol-water mixture. Applied Catalysis A: General,

2008. 340(1), 52-58.

57. Madhavan, J., et al., Kinetics of degradation of acid red 88 in the presence of Co

2+

-ion/peroxomonosulphate reagent. Applied Catalysis A: General,

2009. 368(1-2), 35-39.

58. Chen, C.-C., H.-J. Fan, and J.-L. Jan, Degradation Pathways and Efficiencies of Acid Blue 1 by Photocatalytic Reaction with ZnO Nanopowder. The Journal of Physical Chemistry C, 2008. 112(31), 11962-11972.

59. Liao, Y.-H.B., et al., Synthesis, photocatalytic activities and degradation mechanism of Bi

2

WO

6

toward crystal violet dye. Catalysis Today. In Press, Corrected Proof.

60. Zhang, L., et al., Bi

2

WO

6

Nano- and Microstructures: Shape Control and Associated Visible-Light-Driven Photocatalytic Activities. Small, 2007.

3(9), 1618-1625.

61. Zhang, L., et al., Fabrication of flower-like Bi

2

WO

6

superstructures as high performance visible-light driven photocatalysts. Journal of Materials

Chemistry, 2007. 17(24), 2526-2532.

62. Li, X., G. Liu, and J. Zhao, Two competitive primary processes in the photodegradation of cationic triarylmethane dyes under visible irradiation in TiO

2

dispersions. New Journal of Chemistry, 1999. 23(12), 1193-1196.

表徵及其光催化活. 化工環保, 2007. 27(6).

64. Ma, Y.-S., et al., Photocatalytic degradation of lignin using Pt/TiO

2

as the catalyst. Chemosphere, 2008. 71(5), 998-1004.

 

相關文件