• 沒有找到結果。

5.1 結論

本研究可歸納各項結論如下:

1. 本研究所設計之路網,節線成本以時間範圍呈現,並加入不同時段時 間成本不同之觀念,較符合實際情況路網資料之呈現方式,且對將來 實際路網資料之蒐集、統計也較易作業。

2. A1 和 A2 演算法可提供最短路徑之旅行時間誤差範圍,可提供用路 人資訊,以自行判斷旅行時間之誤差是否在容忍值之內。

3. A3 演算法提供單一路徑的旅行時間範圍和相對應的機率值,可預估 最有可能的到達時間範圍,提供較充足的旅行資訊。

4. 根據驗證結果可知,A3 演算法於節線時間範圍間距固定或範圍較小 時,可有效減少運算次數。

5.2 建議

本研究仍有以下幾項缺失,以供後續研究者參考:

1. 實際路網資料仍可透過先進之科技技術以及統計分析取得,建議可採 用實際路網資料驗證本研究提出之各演算法適用性。

2. A1 演算法仍無加入發生機率之考量,建議可配合各種到達時間之演 算法概念,針對發生機率較高之最快的最短路徑作探討。

3. A3 演算法於時間範圍間距差異性較大之路網,演算次數會極遽增 加,因此建議若蒐集實際路網資料,在統計分析時可盡量採用相同間 距或縮小間距。

4. 當選擇之路徑過於龐大時,A3 演算法最終結果的時間範圍會呈現極

大的差距,造成各時間範圍之機率趨近於零,無法提供有效資訊;故 建議針對大路網應另外提出適用之演算法較佳。

5. 當路網過於龐大時,A3 演算法計算次數成長雖不至於呈現指數爆 炸,但增加速度仍極遽,故不適用於大路網。

6. A3 演算法計算過於複雜,因此一次僅能針對一條路徑作分析,若欲 分析整個路網,則無法避免時間複雜度呈指數爆炸。

參考文獻

1. 陳慧琪,「時間相依最短路徑問題演算方法之研究」,國立交通大學,碩士論文,

民國89 年。

2. 劉偉賢,「汽車客運行前旅次規劃決策支援系統之規劃與設計」,中華大學,碩 士論文,民國94 年。

3. Amir Azaron and Farhad Kianfar, “ Dynamic Shortest Path in Stochastic Dynamic Networks: Ship Routing Problem”, European Journal of Operational Research,144, pp. 138-156, 2003.

4. Athanasios K. Ziliaskopoulos and Hani S. Mahmassani, “Time-Dependent, Shortest-Path Algorithm for Real-Time Intelligent Vehicle Highway System Applications”, Transportation Research Record., Vol.1408, pp. 94-100, 1993.

5. Cedric Davies, Pawan Lingras, “Genetic Algorithms for Rerouting Shortest Paths in Dynamic and Stochastic Networks”, European Journal of Operational Research, 144, pp.27-38, 2003.

6. Elise D. Miller-Hooks and Hani S. Mahmassani, “Least Possible Time Paths in Stochastic, Time-Varying Networks”, Computers Ops Res., Vol. 25, pp.

1107–1125, 1998.

7. Elise D. Miller-Hooks, “Least Expected Time Paths in Stochastic, Time-Varying Transportation Networks”, Transportation Science, Vol. 34, No. 2, May 2000.

8. E. W. Dijkstra,” A Note on Two Papers in Connection with Graphs”, Numeriske

Mathematics, 1, pp. 269-271, 1959.

9. Liping Fu, “Real-Time Vehicle Routing and Scheduling in Dynamic and Stochastic Traffic Networks”, Department of Civil and Environmental Engineering,

University of Alberta, Edmonton, Ph. D. dissertation, 1996.

10. Liping Fu and L.R. Rilett, ”Dynamic O-D Travel Time Estimation Using An

Artificial Neural Network”, in Proc. Vehicle Information & Navigation. Systems, 6th Annu. VINS, pp. 236–242, Seattle, Washington, July 1995.

11. Liping Fu and L.R. Rilett, “Estimation of Expected Minimum Paths in Dynamic and Stochastic Traffic Networks“, Proceedings of IEEE's 6th International

Conference on Vehicular Navigation and Information Systems (VNIS), pp. 200-205, Seattle, Washington, August 1995.

12. Liping Fu and L. R. Rilett, “Expected Shortest Paths in Dynamic and Stochastic Traffic Networks”, Transportation Research PartB, Vol.32, No.7, pp. 499-516, 1998.

13. LR Ford., “Network Flow Theory”, Santa Monica, California:The RAND Corp., 1956.

14. Nicholas Koncz, Joshua Greenfeld, and Kyriacos Mouskos, “A Strategy For Solving Static Multiple-Optimal-Path Transit Network Problems”, Journal of

Transportation Engineering, Vol. 122, No. 3, May/June 1996.

15. Robert W. Floyd, “Algorithm 97:Shortest paths”, Communications of the ACM, v.5 n.6, pp. 345, June 1962.

16. S. Travis Waller and Athanasios K. Ziliaskopoulos, “On the Online Shortest Path Problem with Limited Arc Cost Dependencies”, Networks, Vol. 40(4), pp. 216-227, 2002.

相關文件