• 沒有找到結果。

5-1 結論

本研究以微觀力學模型Mori-Tanaka 模式進行顆粒狀壓電壓磁複合材料等效性質 的模擬,同時亦將微觀力學模型之模擬結果與有限元素軟體COMSOL Multiphysics 相互比較,以證明數值結果與理論之正確性。其相關的結論整理如下:

1. 驗證有限元素軟體COMSOL 建模之正確性

壓電壓磁雙相複合材料等效性質之理論研究於1998 年由 Li 與 Dunn[8]發表,

本文使用相同之微觀力學模型Mori-Tanaka 模式進行雙相顆粒狀壓電壓磁複合材 料等效性質之模擬,以此數值成果為基準來驗證有限元素軟體COMSOL

Multiphysics 之正確性。本文使用三種不同單位晶胞:簡單立方、體心立方、面心 立方結構來模擬顆粒狀複合材料等效性質,成果表示面心立方(FCC)為最適合模擬 等效性質之晶格結構。

2. 建立三相壓電壓磁複合材料之理論模型

本研究主要探討含有殼層內含物的三相顆粒狀壓電壓磁複合材料之磁電效應 及等效性質,經過有限元素軟體COMSOL Multiphysics 建模求得數據相互比較,

顯示雙層法才是適合用於含有殼層內含物的理論模型,亦發現在同樣體積百分比 的配置下,含有殼層內含物的三相複合材料磁電效應,比兩種獨立顆粒內含物的 三相複合材料磁電效應來的佳。

3. 現有壓電壓磁材料中尋找三相顆粒狀複合材料合適的配置

本研究以壓電材料BaTiO3壓磁材料CoFe2O4為基礎,對彈性係數、壓電係數 等數值乘上一倍數去放大或縮小材料係數,以尋找出合適的材料搭配。成果顯示 選用彈性係數較低的材料做為母材以及選擇介電係數較低的壓電材料,對於磁電

118

效應有很大的提升。

4. 尋找彈性係數對於三相顆粒狀複合材料合適的配置

在一些案例下,三相複合材料的配置,磁電效應反而會低於雙相複合材料的 配置。本研究發現,最適合之壓電係數、壓磁係數、介電係數、磁導率,會隨著 彈性係數的大小的不同呈現變化,並不是所有的配置都需要較高的壓電壓磁係數,

磁導率在一些案例下是需要越小越好,有時卻是越高越好,其之間與彈性係數有 相互關係。

5. 交界處配置功能性漸變材料的壓電壓磁複合材料

本文將三相複合材料殼層配置功能性漸變材料,其材料性質為介於內含物與 母材之間,使用有限元素軟體COMSOL 預測之磁電效應與雙相複合材料相差不大,

但使用功能性漸變材料能使複合材料應力集中的位置,避開在兩相不同材料的交 界處,對於防止材料的破壞有幫助。

119

5-2 未來展望

1. 力電磁熱耦合分析

材料會因溫度變化而產生體積膨脹,壓電材料會因為溫度變化產生自發性極 化稱焦電效應,目前研究只做到力電磁三種物理場的耦合,再加入溫度場來模擬 能使物理場之間的耦合更加精確。

2. 發展出功能性漸變材料理論近似模型

本文在功能性漸變材料上的近似只有利用有限元素分析,如能建立三維功能 性漸變材料的理論模型,在功能性漸變材料對於磁電效應的研究上,能做更多方 面的模擬。

3. 使用四方形網格以及薄殼網格進行有限元素分析

COMSOL 軟體在網格繪製功能上較不足,方形網格只能在立方體的結構上才 能繪製,所以本研究均使用三角網格來分析,其在殼層厚度漸薄時,對於有限元 素分析的誤差越大,在殼層越薄時有限元素分析出的等效性質矩陣之對稱性較差。

如果另外使用網格繪製的軟體先行繪製好薄殼網格,應能解決此誤差問題。

120

參考文獻

[1] W. Eerenstein, N. D. Mathur, and J. F. Scott, "Multiferroic and magnetoelectric materials," Nature, vol. 442, pp. 759-765, 2006.

[2] S. Priya, R. Islam, S. Dong, and D. Viehland, "Recent advancements in magnetoelectric particulate and laminate composites," Journal of Electroceramics, vol. 19, pp. 149-166, 2007.

[3] C.-W. Nan, M. I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan, "Multiferroic magnetoelectric composites: Historical perspective, status, and future directions,"

Journal of Applied Physics, vol. 103, pp. 031101-35, 2008.

[4] G. Srinivasan, "Magnetoelectric Composites," Annual Review of Materials Research, vol. 40, pp. 153-178, 2010.

[5] 齊孝定, "多鐵性 (multiferroic)材料的發展及潛在應用," 物理雙月刊, pp. 461-467, 2009.

[6] 楊展其, 梁振偉, and 朱英豪, "多鐵材料物理鉍鐵氧之磁電耦合與應用," 物理雙月 刊, pp. 468-475, 2009.

[7] Z. Shi, C. Wang, X. Liu, and C. Nan, "A four-state memory cell based on

magnetoelectric composite," Chinese Science Bulletin, vol. 53, pp. 2135-2138, 2008.

[8] J. Y. Li and M. L. Dunn, "Micromechanics of magnetoelectroelastic composite materials; average fields and effective behavior," Journal Intelligent Material System and Structures, vol. 9, pp. 404-416, 1998.

[9] J. Y. Li, "Magnetoelectroelastic multi-inclusion and inhomogeneity problems and their applications in composite materials," International Journal of Engineering Science, vol.

38, pp. 1993-2011, 2000.

[10] C. Friebel, I. Doghri, and V. Legat, "General mean-field homogenization schemes for viscoelastic composites containing multiple phases of coated inclusions," International Journal of Solids and Structures, vol. 43, pp. 2513-2541, 2006.

[11] N. A. Spaldin and M. Fiebig, "The Renaissance of Magnetoelectric Multiferroics.,"

Science, vol. 309, pp. 391-392, 2005.

[12] E. M. Lifshitz, L. D. Landau, and L. P. Pitaevskii, Electrodynamics of Continuous Media: Butterworth-Heinemann, 1984.

[13] D. N. Astrov, "The magnetoelectric effect in antiferromagnetics," Soviet Physics - JETP, vol. 11, pp. 708-709, 1960.

[14] G. T. Rado and V. J. Folen, "Observation of the Magnetically Induced Magnetoelectric Effect and Evidence for Antiferromagnetic Domains," Physical Review Letters, vol. 7, pp. 310-311, 1961.

[15] V. J. Folen, G. T. Rado, and E. W. Stalder, "Anisotropy of the Magnetoelectric Effect in

121

Cr2O3," Physical Review Letters, vol. 6, pp. 607-608, 1961.

[16] G. T. Rado, J. M. Ferrari, and W. G. Maisch, "Magnetoelectric susceptibility and magnetic symmetry of magnetoelectrically annealed TbPO4," Physical Review B, vol.

29, pp. 4041-4048, 1984.

[17] E. Ascher, H. Rieder, H. Schmid, and H. Stossel, "Some Properties of

Ferromagnetoelectric Nickel-Iodine Boracite, Ni3B7O13I," Journal of Applied Physics, vol. 37, pp. 1404-1405, 1966.

[18] J.-P. Rivera, "The linear magnetoelectric effect in LiCoPO4 Revisited," Ferroelectrics, vol. 161, pp. 147-164, 1993.

[19] H. Schmid, "Introduction to the proceedings of the 2nd international conference on magnetoelectric interaction phenomena in crystals, MEIPIC-2," Ferroelectrics, vol. 161, pp. 1-28, 1994.

[20] M. F. Ashby, H. Shercliff, and D. Cebon, Materials: Engineering, Science, Processing and Design, 2007.

[21] I. Pane, N. A. Fleck, J. E. Huber, and D. P. Chu, "Effect of geometry upon the

performance of a thin film ferroelectric capacitor," International Journal of Solids and Structures, vol. 45, pp. 2024-2041, 2008.

[22] H. Ryu, P. Murugavel, J. H. Lee, S. C. Chae, T. W. Noh, Y. S. Oh, H. J. Kim, K. H. Kim, J. H. Jang, M. Kim, C. Bae, and J. G. Park, "Magnetoelectric effects of nanoparticulate Pb(Zr 0.52Ti 0.48)O 3]--NiFe 2O 4 composite films," Applied Physics Letters, vol. 89, pp.

102907-3, 2006.

[23] H.-C. He, J.-P. Zhou, J. Wang, and C.-W. Nan, "Multiferroic

Pb(Zr0.52Ti0.48)O3--Co0.9Zn0.1Fe2O4 bilayer thin films via a solution processing," Applied Physics Letters, vol. 89, pp. 052904-3, 2006.

[24] H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L.

Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, and R. Ramesh, "Multiferroic BaTiO3-CoFe2O4

Nanostructures," Science, vol. 303, pp. 661-663, 2004.

[25] J. v. Suchtelen, "A new application of composite materials," Philips Res. Repts, pp.

28-37, 1972.

[26] G. Harshe, J. P. Dougherty, and R. E. Newnham, "Theoretical modelling of 3-0/0-3 magnetoelectric composites," International Journal of Applied Electromagnetics in Materials, vol. 4, pp. 161-171, 1993.

[27] C.-W. Nan, "Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases," Physical Review B, vol. 50, pp. 6082-6088, 1994.

[28] G. Harshe, J. P. Dougherty, and R. E. Newnham, "Theoretical modelling of multilayer magnetoelectric composites," International Journal of Applied Electromagnetics in Materials, vol. 4, pp. 145-159, 1993.

122

[29] M. Avellaneda and G. Harshe, "Magnetoelectric Effect in

Piezoelectric/Magnetostrictive Multilayer (2-2) Composite," Journal Intelligent Material System and Structures, vol. 5, pp. 501-513, 1994.

[30] Y. Benveniste, "Magnetoelectric effect in fibrous composites with piezoelectric and piezomagnetic phases," Physical Review B, vol. 51, pp. 16424-16427, 1995.

[31] C. W. Nan, M. Li, X. Feng, and S. Yu, "Possible giant magnetoelectric effect of ferromagnetic rare-earth--iron-alloys-filled ferroelectric polymers," Applied Physics Letters, vol. 78, pp. 2527-2529, 2001.

[32] M. I. Bichurin, I. A. Kornev, V. M. Petrov, A. S. Tatarenko, Y. V. Kiliba, and G.

Srinivasan, "Theory of magnetoelectric effects at microwave frequencies in a

piezoelectric/magnetostrictive multilayer composite," Physical Review B, vol. 64, pp.

094409-6, 2001.

[33] G. Srinivasan, E. T. Rasmussen, J. Gallegos, R. Srinivasan, Y. I. Bokhan, and V. M.

Laletin, "Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides," Physical Review B, vol. 64, pp. 214408-6, 2001.

[34] Y. X. Liu, J. G. Wan, J. M. Liu, and C. W. Nan, "Numerical modeling of

magnetoelectric effect in a composite structure," Journal of Applied Physics, vol. 94, pp.

5111-5117, 2003.

[35] J. G. Wan, J. M. Liu, H. L. W. Chand, C. L. Choy, G. H. Wang, and C. W. Nan, "Giant magnetoelectric effect of a hybrid of magnetostrictive and piezoelectric composites,"

Journal of Applied Physics, vol. 93, pp. 9916-9919, 2003.

[36] M. I. Bichurin, V. M. Petrov, and G. Srinivasan, "Theory of low-frequency

magnetoelectric coupling in magnetostrictive-piezoelectric bilayers," Physical Review B, vol. 68, pp. 054402-13, 2003.

[37] G. Srinivasan, E. T. Rasmussen, B. J. Levin, and R. Hayes, "Magnetoelectric effects in bilayers and multilayers of magnetostrictive and piezoelectric perovskite oxides,"

Physical Review B, vol. 65, pp. 134402-7, 2002.

[38] C. W. Nan, M. Li, and J. H. Huang, "Calculations of giant magnetoelectric effects in ferroic composites of rare-earth-iron alloys and ferroelectric polymers," Physical Review B, vol. 63, pp. 144415-9, 2001.

[39] Z. Shi, C. W. Nan, J. M. Liu, D. A. Filippov, and M. I. Bichurin, "Influence of mechanical boundary conditions and microstructural features on magnetoelectric behavior in a three-phase multiferroic particulate composite," Physical Review B, vol.

70, pp. 134417-6, 2004.

[40] J. Ryu, S. Priya, A. Vazquez, and K. Uchino, "Effect of the Magnetostrictive Layer on Magnetoelectric Properties in Lead Zirconate Titanate/Terfenol-D Laminate

Composites," Journal of the American Ceramic Society, vol. 84, pp. 2905-2908, 2001.

[41] C. W. Nan, L. Liu, N. Cai, J. Zhai, Y. Ye, Y. H. Lin, L. J. Dong, and C. X. Xiong, "A

123

three-phase magnetoelectric composite of piezoelectric ceramics, rare-earth iron alloys, and polymer," Applied Physics Letters, vol. 81, pp. 3831-3833, 2002.

[42] Z. Shi, J. Ma, Y. Lin, and C.-W. Nan, "Magnetoelectric resonance behavior of simple bilayered Pb(Zr,Ti)O 3--(Tb,Dy)Fe 2/epoxy composites," Journal of Applied Physics, vol.

101, pp. 043902-4, 2007.

[43] S. Dong, J. Zhai, J. Li, and D. Viehland, "Enhanced magnetoelectric effect in

three-phase MnZnFe2O4/Tb1 - xDy xFe 2- y/Pb(Zr,Ti)O 3 composites," Journal of Applied Physics, vol. 100, pp. 124108-4, 2006.

[44] J. Lee, J. G. Boyd Iv, and D. C. Lagoudas, "Effective properties of three-phase

electro-magneto-elastic composites," International Journal of Engineering Science, vol.

43, pp. 790-825, 2005.

[45] A. Gupta and R. Chatterjee, "Magnetic, dielectric, magnetoelectric, and microstructural studies demonstrating improved magnetoelectric sensitivity in three-phase BaTiO

3--CoFe 2O 4--poly(vinylidene-fluoride) composite," Journal of Applied Physics, vol.

106, pp. 024110-5, 2009.

[46] J. L. MacManus-Driscoll, P. Zerrer, H. Wang, H. Yang, J. Yoon, A. Fouchet, R. Yu, M.

G. Blamire, and Q. Jia, "Strain control and spontaneous phase ordering in vertical nanocomposite heteroepitaxial thin films," Nat Mater, vol. 7, pp. 314-320, 2008.

[47] M. Fiebig, T. Lottermoser, D. Frohlich, A. V. Goltsev, and R. V. Pisarev, "Observation of coupled magnetic and electric domains," Nature, vol. 419, pp. 818-820, 2002.

[48] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V.

Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, "Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures," Science, vol. 299, pp. 1719-1722, March 14, 2003 2003.

[49] Y. Benveniste, G. J. Dvorak, and T. Chen, "Stress fields in composites with coated inclusions," Mechanics of Materials, vol. 7, pp. 305-317, 1989.

[50] A. Dasgupta and S. M. Bhandarkar, "A generalized self-consistent Mori-Tanaka scheme for fiber-composites with multiple interphases," Mechanics of Materials, vol. 14, pp.

67-82, 1992.

[51] H.-Y. Kuo, "Multicoated elliptic fibrous composites of piezoelectric and piezomagnetic phases," International Journal of Engineering Science, vol. 49, pp. 561-575, 2011.

[52] H.-Y. Kuo and E. Pan, "Effective magnetoelectric effect in multicoated circular fibrous multiferroic composites," Journal of Applied Physics, vol. 109, pp. 104901-6, 2011.

[53] F. Dinzart and H. Sabar, "Magneto-electro-elastic coated inclusion problem and its application to magnetic-piezoelectric composite materials," International Journal of Solids and Structures, vol. 48, pp. 2393-2401, 2011.

[54] "IEEE Standard on Piezoelectricity," ANSI/IEEE Std 176-1987, 1987.

[55] "IEEE Standard on Magnetostrictive Materials: Piezomagnetic Nomenclature," IEEE

124

Std 319-1990, 1990.

[56] J. H. Huang and W.-S. Kuo, "The analysis of piezoelectric/piezomagnetic composite materials containing ellipsoidal inclusions," Journal of Applied Physics, vol. 81, pp.

1378-1386, 1997.

[57] http://www.efunda.com, "Piezo Material Data," (http://www.efunda.com).

[58] E. Pan, "Exact Solution for Simply Supported and Multilayered

Magneto-Electro-Elastic Plates," Journal of Applied Mechanics, vol. 68, pp. 608-618, 2001.

[59] G. Engdahl, Handbook of Giant Magnetostrictive MaterialsHandbook of Giant Magnetostrictive Materials, 2000.

[60] T. Mori and K. Tanaka, "Average stress in matrix and average elastic energy of materials with misfitting inclusions," Acta Metallurgica, vol. 21, pp. 571-574, 1973.

[61] R. Hill, "Theory of mechanical properties of fibre-strengthened materials--III.

self-consistent model," Journal of the Mechanics and Physics of Solids, vol. 13, pp.

189-198, 1965.

[62] S. Nemat-Nasser and M. Hori, Micromechanics: Overall Properties of Heterogeneous Materials, 2nd ed.: Elsevier Science, 1999.

[63] J. Qu and M. Cherkaoui, Fundamentals of Micromechanics of Solids: Wiley, 2006.

[64] J. D. Eshelby, "The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems," Proceedings of the Royal Society of London. Series A.

Mathematical and Physical Sciences, vol. 241, pp. 376-396, 1957.

[65] W. Biao, "Three-dimensional analysis of an ellipsoidal inclusion in a piezoelectric material," International Journal of Solids and Structures, vol. 29, pp. 293-308, 1992.

[66] Y. Mikata, "Determination of piezoelectric Eshelby tensor in transversely isotropic piezoelectric solids," International Journal of Engineering Science, vol. 38, pp.

605-641, 2000.

[67] Y. Benveniste, "The determination of the elastic and electric fields in a piezoelectric inhomogeneity," Journal of Applied Physics, vol. 72, pp. 1086-1095, 1992.

[68] M. L. Dunn and M. Taya, "An Analysis of Piezoelectric Composite Materials

Containing Ellipsoidal Inhomogeneities," Proceedings of the Royal Society of London.

Series A: Mathematical and Physical Sciences, vol. 443, pp. 265-287, November 8, 1993 1993.

[69] M. L. Dunn and H. A. Wienecke, "Green's functions for transversely isotropic piezoelectric solids," International Journal of Solids and Structures, vol. 33, pp.

4571-4581, 1996.

[70] J. Y. Li and M. L. Dunn, "Anisotropic coupled-field inclusion and inhomogeneity problems," Philosophical Magazine A, vol. 77, pp. pp.1341-1350, 1998.

[71] J. H. Huang, Y.-H. Chiu, and H.-K. Liu, "Magneto-electro-elastic Eshelby tensors for a

125

piezoelectric-piezomagnetic composite reinforced by ellipsoidal inclusions," Journal of Applied Physics, vol. 83, pp. 5364-5370, 1998.

[72] Z. Hashin, "Thin interphase/imperfect interface in elasticity with application to coated fiber composites," Journal of the Mechanics and Physics of Solids, vol. 50, pp.

2509-2537, 2002.

[73] W. Beckert, W. Kreher, W. Braue, and M. Ante, "Effective properties of composites utilising fibres with a piezoelectric coating," Journal of the European Ceramic Society, vol. 21, pp. 1455-1458, 2001.

[74] F. T. Fisher and L. C. Brinson, "Viscoelastic interphases in polymer-matrix composites:

theoretical models and finite-element analysis," Composites Science and Technology, vol. 61, pp. 731-748, 2001.

[75] C. P. Jiang and Y. K. Cheung, "An exact solution for the three-phase piezoelectric cylinder model under antiplane shear and its applications to piezoelectric composites,"

International Journal of Solids and Structures, vol. 38, pp. 4777-4796, 2001.

[76] J. N. Reddy and Z. Q. Cheng, "Three-Dimensional Solutions of Smart Functionally Graded Plates," Journal of Applied Mechanics, vol. 68, pp. 234-241, 2001.

[77] Z. Zhong and E. T. Shang, "Three-dimensional exact analysis of a simply supported functionally gradient piezoelectric plate," International Journal of Solids and Structures, vol. 40, pp. 5335-5352, 2003.

[78] M. C. Ray and H. M. Sachade, "Finite element analysis of smart functionally graded plates," International Journal of Solids and Structures, vol. 43, pp. 5468-5484, 2006.

[79] E. Pan and F. Han, "Exact solution for functionally graded and layered

magneto-electro-elastic plates," International Journal of Engineering Science, vol. 43, pp. 321-339, 2005.

[80] V. M. Petrov and G. Srinivasan, "Enhancement of magnetoelectric coupling in

functionally graded ferroelectric and ferromagnetic bilayers," Physical Review B, vol.

78, pp. 184421-8, 2008.

[81] X. Wang, E. Pan, J. D. Albrecht, and W. J. Feng, "Effective properties of multilayered functionally graded multiferroic composites," Composite Structures, vol. 87, pp.

206-214, 2009.

126

Cr,Core = CPE/CBTO

Cr,Shell = CPM/CCFO

Cr,Core = CPE/CBTO

Cr,Shell = CPM/CCFO

Cr,Core = CPE/CBTO

Cr,Shell = CPM/CCFO

Cr,Core = CPE/CBTO

Cr,Shell = CPM/CCFO

Cr,Core = CPE/CBTO

Cr,Shell = CPM/CCFO

Cr,Core = CPE/CBTO

Cr,Shell = CPM/CCFO

127

er,Core = ePE/eBTO

qr,Shell = qPM/qCFO

er,Core = ePE/eBTO

qr,Shell = qPM/qCFO

er,Core = ePE/eBTO

qr,Shell = qPM/qCFO

er,Core = ePE/eBTO

qr,Shell = qPM/qCFO

128

129

Cr,Core = CPM/CCFO

Cr,Shell = CPE/CBTO

Cr,Core = CPM/CCFO

Cr,Shell = CPE/CBTO

Cr,Core = CPM/CCFO

Cr,Shell = CPE/CBTO

Cr,Core = CPM/CCFO

Cr,Shell = CPE/CBTO

Cr,Core = CPM/CCFO

Cr,Shell = CPE/CBTO

Cr,Core = CPM/CCFO

Cr,Shell = CPE/CBTO

130

圖A-2-2 與圖 A-1-2 很相似,就像圖形旋轉了 90 度之後,其位於殼層的壓電材 料之er,BTO約3 至 4 倍之間,磁電耦合效應最佳,與圖 A-1-2 結果相近。

圖A-2-2 不同壓電係數e 與壓磁係數 q 對磁電耦合效應之影響

qr,Matrix = qPM/qCFO = 1 *E,11/0E,11

qr,Core = qPM/qCFO

er,Shell = ePE/eBTO

qr,Core = qPM/qCFO

er,Shell = ePE/eBTO

qr,Core = qPM/qCFO

er,Shell = ePE/eBTO

qr,Core = qPM/qCFO

er,Shell = ePE/eBTO

131

132

Cr,Core = CPM/CCFO

Cr,Shell = CPM/CCFO

Cr,Core = CPM/CCFO

Cr,Shell = CPM/CCFO

Cr,Core = CPM/CCFO

Cr,Shell = CPM/CCFO

Cr,Core = CPM/CCFO

Cr,Shell = CPM/CCFO

Cr,Core = CPM/CCFO

Cr,Shell = CPM/CCFO

Cr,Core = CPM/CCFO

Cr,Shell = CPM/CCFO

133

qr,Core = qPM/qCFO

qr,Shell = qPM/qCFO

qr,Core = qPM/qCFO

qr,Shell = qPM/qCFO

qr,Core = qPM/qCFO

qr,Shell = qPM/qCFO

qr,Core = qPM/qCFO

qr,Shell = qPM/qCFO

134

135

Cr,Core = CPM/CCFO

Cr,Shell = CPE/CBTO

Cr,Core = CPM/CCFO

Cr,Shell = CPE/CBTO

Cr,Core = CPM/CCFO

Cr,Shell = CPE/CBTO

Cr,Core = CPM/CCFO

Cr,Shell = CPE/CBTO

Cr,Core = CPM/CCFO

Cr,Shell = CPE/CBTO

Cr,Core = CPM/CCFO

Cr,Shell = CPE/CBTO

136

qr,Core = qPM/qCFO

er,Shell = ePE/eBTO

qr,Core = qPM/qCFO

er,Shell = ePE/eBTO

qr,Core = qPM/qCFO

er,Shell = ePE/eBTO

qr,Core = qPM/qCFO

er,Shell = ePE/eBTO

相關文件