• 沒有找到結果。

1. 以 SEM 及 EDS 分析 Sn-0.7Cu-xZn 與 Cu 基材銲接後之界面 之顯微組織,分析結果顯示 Sn-0.7Cu-xZn 合金銲接後之界面 反應層為扇貝狀之 Cu6Sn5介金屬化合物。銲錫組織係由 Sn 基地+Cu6Sn5介金屬化合物所組成。

2. 經

150°C

高溫儲存試驗後可發現,Sn-0.7Cu銲點之接合界面

反應層,

隨反應時間增加而成長,且延長處理時間至300

小時後,於界面反應層中會形成第二層界面反應物Cu

3

Sn。

3. 經

150°C

高溫儲存試驗後可發現,

Zn元素的添加可抑制

Cu3Sn成長

Sn-0.7Cu-0.05Zn及Sn-0.7Cu-0.5Zn合金銲點經 500小時長時間高溫儲存後,界面反應層中不會形成

Cu

3

Sn,

具穩定界面反應層組織之能力,有助於提升合金銲點的高溫 信賴性。

4. 由銲點拉伸試驗結果得知 Zn 合金元素(0.05 及 0.5 wt.%)加 入使 Sn-0.7Cu 合金銲點平均強度由原本 28.95N 上升至 29.3N 及 30.2N

。經過 150℃高溫儲存 25~500 小時後,

Sn-0.7Cu-xZn

合金之銲點強度則隨儲存時間增加而下降,但

添加 Zn 元素

之銲鍚合金,銲點拉伸強度亦優於 Sn-0.7Cu 合金,顯示 Zn 元素添加有助於提升銲點強度和高溫長時間儲存之信賴性。

5.

Sn-0.7Cu-xZn合金銲接後之銲點在拉伸破斷後,其破斷面形 態均為渦穴狀組織之延性破壞,破斷位置位於銲錫材料中。

Sn-0.7Cu合金銲點經高溫儲存25~100小時後,破斷位置仍發 生在銲錫處,然而經300~500小時儲存後,接合界面反應層 中形成之Cu3Sn介金屬化合物,造成銲點衰弱使破斷位置發 生在銲錫與反應界面層處,且銲點強度明顯下降。

6.

Sn-0.7Cu合金中添加Zn元素後,其銲點在銲接後以及高溫儲 存後,拉伸破斷均發生在銲錫材料區域,且在長時間高溫儲 存處理條件下銲點強度高於Sn-0.7Cu合金,顯示在Sn-0.7Cu 合金中添加微量的Zn元素,可以提升Sn-0.7Cu合金銲點在長 時間儲放或操作後的信賴性。

參考文獻

[1] P.T. Vianco, D.R. Frear, “Issues in the Replacement of Lead-Bearing Solders”, Journal of the Minerals Metals & Materials Society (JOM), Vol.

45, No. 7, pp. 14-19, July 1993.

[2] 謝坤龍,王正全,「PCB 無鉛表面處理製程技術之介紹」,工業材料 雜誌,207 期,159-166 頁,民國九十三年三月。

[3] 鄭壽昌,「錫-鋅-銀-鋁無鉛銲錫的機械、潤濕及時效性之研究」,國立 成功大學,博士論文,第一章,第 12 頁,民國九十四年。

[4] R. R. Tummala, E.J. Rymaszewski, “Microelectronic packaging handbook”, Van Nostrand Reinhold,New York, 1989.

[5] J. Lau, et al., Electronic Packaging: Design, Materials, Process, and Reliability, McGraw-Hill, Washington, 1998.

[6] 田民波編著,半導體電子元件構裝技術,初版,台北市,五南圖書出 版股份有限公司,民國九十四年十月。

[7] 陳信文等編著,電子構裝技術與材料,初版,台北縣五股鄉,高立圖 書有限公司,民國九十三年四月。

[8] K. Jung, H. Conrad, “Microstructure coarsening during static annealing of 60Sn40Pb solder joints: I stereology”, Jonural of Electronic Materials, Vol.

30, No. 10, pp. 1294-1302, 2001.

[9] K. Jung, H. Conrad, “Microstructure coarsening during static annealing of 60Sn40Pb solder joints: II eutectic coarsening kinetics”, Jonural of Electronic Materials, Vol. 30, No. 10, pp. 1303-1307, 2001.

[10] K. Jung, H. Conrad, “Microstructure coarsening during static annealing of 60Sn-40Pb solder joints: III intermetallic compound growth kinetics”, Jonural of Electronic Materials, Vol. 30, No. 10, pp. 1308-1312, 2001.

[11] 游善溥,「錫鋅系無鉛銲錫與銅基材間附著性與界面反應之研究」,

國立成功大學,博士論文,民國八十九年。

[12] J. London, D.W. Ashall, “Some Properties of Soldered Joints Made With a

Spring 1986.

[13] M.A. Carroll, M.E. Warwick, “Surface tension of Sn-Pb alloys: part 1 effect of Bi, Sb, P, Ag, and Cu on 60Sn-40Pb solder”, Material Science and Technology, Vol.3, No. 12, p.1040-1045, 1987.

[14] C.Y. Huang, K. Srihari, A.J. McLenaghan, and G.R. Westby, “Fluxactivity evolution using the wetting balance”, IEEE/CPMT, Int’lElectron. Manufact.

Tech. Symposium, p. 344, 1995.

[15] B. Nicholson and D. Bloomfield, Soldering & Surface Mount Technology,Vol.10, p. 23, 1992.

[16] C.A. Mackay and W.D. Von Voss, “Effect of compositional changesand impurities on wetting properties of eutectic Sn-Bi alloy used assolder”, Mater. Sci. Technol., Vol. 1, p. 240, 1985.

[17] J. Glazer,“Metallurgy of low temperature Pb-free solders for electronic assembly" International Materials Reviews, Vol 40, No. 2, p p.65-93, 1995.

[18] J. London, D.W. Ashall, “Some Properties of Soldered Joints Made With a Tin/Silver Eutectic Alloy”, Brazing and Soldering, No. 10, pp. 17-20, Spring 1986.

[19] S. Ahat, M. Shang, and L. Luo, “Effects of static thermal aging andthermal cycling on the microstructure and shear strength of Sn95.5Ag3.8-Cu0.7 solder joints”, J. Mater. Res., Vol. 16, p. 2914, 2001.

[20] Y. kariya, Y. Hirata, M. Otsuka, “Effect of thermal cycles on the mechanical strength of quad flat pack leads/Sn-3.5Ag-X(X=Bi and Cu) solder joints”, Journal of Electronic Materials, Vol.28, No.11, pp.1263-1269, May 1999.

[21] S. Ahat, M. Sheng, L. Luo, “Microstructure and shear strength evolution of SnAg/Cu surface mount solder joint during aging”, Journal of Electronic Materials, Vol. 30, No. 10, pp. 1317-1322, June 2001.

[22] S. Choi, T.R. Bieler, J.P. Lucas, K.N. Subramanian, “Characterization of

the growth of intermetallic interfacial layers of Sn-Ag and Sn-Pb eutectic solders and their composite solders on Cu substrate during isothermal long-term aging”, Journal of Electronic Materials, Vol. 28, No.11, pp.

1209-1215, August 1999.

[23] E.W. Hare, R. Corwin, and E.K. Rjemer, Pro. of ASM Intern. Electron.

Packag. Mat. and Proc. Conf., Metals Park, OH, ASM International, p. 112 32, 1986.

[24] H.W. Miao, J.G. Duh, “Microstructure evolution in Sn-Bi and Sn-Bi-Cu solder joints under thermal aging”, Materials Chemistry and Physics, Vol.

71, No. 3, pp. 255-271, 2001.

[25] P.L. Liu, J.K. Shang, “Interfacial segregation of bismuth in copper/tin-bismuth solder interconnect”, Scripta Materialia, Vol.44, No. 7, pp. 1019-1023, April 2001.

[26] S.H. Huh, K.S. Kim, K. Suganuma, “Effect of Ag addition on the microstructural and mechanical properties of Sn-Cu eutectic solder”, Materials Transactions, Vol. 42, No. 5, pp. 739-744, January 2001.

[27] Sung K. Kang, Donovan Leonard, Da-Yuan Shih, Lynne Gignac, D.W.

Henderson, Sungil Cho, and Jin Yu, “Interfacial Reactions of Sn-Ag-Cu Solders Modified by Minor Zn Alloying Addition”, Journal of Electronic Materials, Vol. 35, No. 3, 2006.

[28] Moon Gi Cho, Sung K. Kang, Da-Yuan Shih, and Hyuck Mo Lee, “Effects of Minor Additions of Zn on Interfacial Reactions of Sn-Ag-Cu and Sn-Cu Solders with Various Cu Substrates during Thermal Aging”, Journal of Electronic Materials, Vol. 36, No. 11, 2007.

[29] Tarek El-Ashram and R.M. Shalaby, “Effect of Rapid Solidification and Small Additions of Zn and Bi on the Structure and Properties of Sn-Cu Eutectic Alloy”, Journal of Electronic Materials, Vol. 34, No. 2, pp.

212-215, 2005.

Formation in Sn3Ag0.5Cu and Sn3Ag0.5Cu0.06Ni0.01Ge Solder BGA Packages with Immersion Ag Surface Finish”, Journal of Electronic Materials, Vol. 35, No. 2, 2006.

[31] H. Nishikaw, A. Komatsu, T. Takemoto, “Interfacial Reaction between Sn-Ag-Co Solder and Metals”, Materials Transactions, Vol. 46, No. 11, pp.2394~2399, November 2005.

[32] H. Nishikaw, A. Komatsu, T. Takemoto, “Morphology and Pull Strength of Sn-Ag(-Co) Solder Joint”, Journal of Electronic Materials, Vol. 36, No. 9, pp.1137~1143, August 2007.

相關文件