• 沒有找到結果。

本論文主要合成各種不同的聚醯亞胺/聚苯胺奈米高分子複合材料,探討 高分子添加奈米陶瓷及碳管對其機械性質、熱性質、電性及其顯微結構等的 影響。

1. 本研究成功合成 PI/Silica、PI/MWNTs、PANI/TiO2、三種奈米複合材 料。依據實驗結果,奈米添加粒子的分散性對於材料的相關特性有極 大的影響。

2. 對 PI/Silica 系統而言,奈米 Silica 對於 PI 的介電性質有降低的功效,

若加上微量含氟的單體來對Silica 表面作改質,則可達到 2.55 介電常 數的範圍。比傳統低介電PI 需用含氟單體進行合成要經濟得多。

3. 不同的含氟單體對奈米 Silica 表面改質的效果也不一樣。其中 6FBPA 對於粒子分散及介電常數的降低效果,比BISAF 單體更為顯著,主 要的原因是6FBPA 也是一個 amide 的單體,其兩端的官能機就是很 好的反應機構,可以與Silica 產生鍵結,反觀 BISAF 的兩端就只有 OH 基,無法提供鍵結的條件。

4. PI/MWNTs 系統中,MWNTs 的添加達 15%wt 時可使 PI 的儲存模數 比純PI 提高 9 倍之多,達 28.457GPa。MWNTs 添加達 7%wt 時其拉 伸強度約為純PI 的兩倍。

5. MWNTs 的分散性對於 PI 的性質有絕對的影響,我們成功使用強酸來

增加MWNTs 的表面官能基並除去表面的雜質,使 MWNTs 與 PI 有 更好的鍵結,並達到更均勻的分散性。

6. 一系列的 PANI/TiO2 奈米高分子複合材料之合成及備製已完成。由 XRD 及 TEM 的分析結果,TiO2已成功地混合於PANI 之中

7. 在 1~5wt%TiO2的添加量下,介電常數及介電損失都隨著TiO2 的增 加而增加,導電度也隨著TiO2 (1~5wt%)的增加而增加。

8. 不同 Size 的 TiO2 與PANI 所形成的奈米複合材料,其 SEM 的 morphology 有相當大的差異,P-25 的 TiO2 Size(50nm) 較大分散 較均勻,PANI 就將其包覆成顆粒狀。Hombikat 的 TiO2 其 Size(25nm)

較小凝聚嚴重,PANI 就形成連續的片狀。

參考文獻

1. Alain Walcarius, “Electrochemical Applications of Silica-Based Organic-Inorganic Hybrid Materials”, Chemistry of Materials, 13:10, pp.

3351-3372, 2001.

2. G. K. Chuah, X. Hu, P. Zhan, S. Jaenicke, “Catalysts from MCM-41:

framework modification, pore size engineering, and organic - inorganic hybrid materials”, Journal of Molecular Catalysis A : Chemical, 181:1-2, pp. 25-31, 2002.

3. Enock O. Dare, Gabriel A. Olatunji, David S. Ogunniyi, “Organic – inorganic hybrid materials I: Synthesis, characterization and thermal properties of a novel polyhedral cubic silsesquioxane”, Bulletin of the Chemical Society of Ethiopia, 18:1, pp. 37-43, 2004.

4. Hideki Sugimoto, Eiji Nakanishi, Katsunori Yamauchi, Kazuki Daimatsu, Takashi Yasumura, Katsuhiro Inomata, “Preparation and properties of organic - inorganic hybrid materials from sodium silicate”, Polymer Bulletin (Heidelberg, Germany), 52:3-4, pp. 209-218, 2004.

5. Ming-na Xiong(熊明娜), Shu-xue Zhou(周樹學), Bo You(游波), Li-min Wu(武利民), “Mechanical, thermal and optical properties of acrylic resin/TiO2 organic - inorganic hybrid materials(丙烯酸樹脂/TiO2有機

-無機雜化材料的力學、熱學和光學性能研究)” Cailiao Kexue Yu Gongcheng Xuebao(材料科學與工程學報), 23:2, pp. 191-195, April 2005.

6. Songbai Lin, Jihuai Wu, Kangde Yao, Kaiyong Cai, Chunmei Xiao, Chanjie Jiang, “Study of microstructure and properties of HEC-g-AA/SiO2 organic - inorganic hybrid materials”, Composite Interfaces, 11:3, pp.

271-276, 2004.

7. Saegusa T, “Organic – inorganic Polymers hybrids”, Pure and Applied

Chemistry(ChimiePure et Appliquee), 67:12, pp. 1965-1970, 1995.

8. G. Hougham, G. Tesoro, A. Viehbeck, “Influence of Free Volume Change on the Relative Permittivity and Refractive Index in Fluoropolyimides”, Macromolecules, 29:10, pp. 3453-3456, 1996.

9. G. Hougham, G. Tesoro, A. Viehbeck, J. D. Chapple-sokol, “Polarization Effects of Fluorine on the Relative Permittivity in Polyimides”, Macromolecules, 27:21, pp. 5964-5971, 1994 .

10. J. O. Simpson, A. K. St.Clair, “Fundamental insight on developing low dielectric constant polyimides “, Thin Solid Films, 308-309, pp. 480-485, 1997.

11. Sadayuki Ukishima, Masayuki Iijima, Masatoshi Sato, Yoshikazu Takahashi, Eiichi Fukada, “Heat resistant polyimide films with low dielectric constant by vapor deposition polymerization”, Thin Solid Films, 308-309, pp. 475-479, 1997.

12. T. Liang, Y. Makita, S. Kimura, “Effect of film thickness on the electrical properties of polyimide thin films”, Polymer, 42:11, pp. 4867-4872, May 2001.

13. Choonkeun Lee, Yonggun Shul, Haksoo Han, “Dielectric properties of oxydianiline-based polyimide thin films according to the water uptake”, Journal of Polymer Science. Part B: Polymer Physics, 40:19, pp.

2190-2198, 1 October 2002.

14. P. S. Alegaonkar, A. B. Mandale, S. R. Sainkar and V. N. Bhoraskar,

“Refractive index and dielectric constant of the boron and fluorine diffused polyimide”, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 194:3, Pages 281-288, September 2002.

15. Goto Kohei, Akiike Toshiyuki, Inoue Yasutake, Matsubara Minoru, Kricheldorf Hans R, “Polymer design for thermally stable polyimides with

2003.

16. R.H. Vora, P.S.G. Krishnan, S.H. Goh, T.S. Chung, “Synthesis and Properties of Designed Low-k Fluoro-Copolyetherimides. Part 1 “, Advanced Functional Materials, 11:5, pp. 361 – 373, 2 Oct 2001.

17. W. C. Wang, R. H. Vora, E. T. Kang, K. G. Neoh, C. K. Ong, L. F. Chen,

“Nanoporous Ultra-Low- Films Prepared from Fluorinated Polyimide with Grafted Poly(acrylic acid) Side Chains”, Advanced Materials, 16:1, pp. 54-57, January, 2004.

18. Y. Chen, W. Wang, W. Yu, Z. Yuan, E.-T. Kang, K.-G. Neoh, B. Krauter, A. Greiner, “Nanoporous Low- Polyimide Films via Poly(amic acid)s with Grafted Poly(ethylene glycol) Side Chains from a Reversible Addition-Fragmentation Chain-Transfer- Mediated Process”, Advanced Functional Materials, 14:5, pp. 471-478, May 2004.

19. Y. W. Chen, W. C. Wang, W. H. Yu, E. T. Kang, K. G. Neoh, R. H. Vora, C. K. Ong, L. F. Chen, “Ultra-low- materials based on nanoporous fluorinated polyimide with well-defined pores via the RAFT-moderated graft polymerization process”, Journal of Materials Chemistry, 14:9, pp.

1406-1412, 2004.

20. J. L. Hedrick, K. R. Carter, R. Richter, R. D. Miller, T. P. Russell, and V.

Flores, “Polyimide Nanofoams from Aliphatic Polyester-Based Copolymers”, Chemistry of Materials, 10:1, pp. 39-49, January 1998.

21. Y. Charlier, J. L. Hedrick, T. P. Russell, “Polyimide foams prepared from homopolymer/copolymer mixtures”, Polymer, 36:29, pp. 4529-4534, 1995.

22. J. L. Hedrick, T. P. Russell, M. Sanchez, R. DiPietro, S. Swanson, D.

Mecerreyes, R. Jerome, “Polyimide Nanofoams from Caprolactone-Based Copolymers”, Macromolecules, 29:10, pp. 3642-3646, 1996.

23. Viktor Yu. Kramarenko, Tetyana A. Shantalil, Iryna L. Karpova, Kateryna S. Dragan, Eleonora G. Privalko, Valery P. Privalko, Daniel Fragiadakis,

Polycarpos Pissis, “Polyimides reinforced with the sol-gel derived organosilicon nanophase as low dielectric permittivity materials”, Polymers for Advanced Technologies, 15:3 , pp. 144-148, Feb 2004.

24. V. A. Bershtein, L. M. Egorova, P. N. Yakushev, P. Pissis, P. Sysel, L.

Brozova, “Molecular dynamics in nanostructured polyimide-silica hybrid materials and their thermal stability”, Journal of Polymer Science Part B:

Polymer Physics, 40:10, pp. 1056-1069, 15 May 2002.

25. Mei-Hui Tsai, Wha-Tzong Whang, “Low dielectric polyimide/

poly(silsesquioxane)-like nanocomposite material”, Polymer, 42:9, pp.

4197-4207, April 2001.

26. Cheng-Tyng Yen, Wen-Chang Chen, Der-Jang Liaw, Hsin-Yi Lu,

“Synthesis and properties of new polyimide–silica hybrid films through both intrachain and interchain bonding”, Polymer, 44:23, pp.

7079-7087, November 2003.

27. C. M. Leu, Y. T. Chang, K. H. Wei, “Polyimide-Side-Chain Tethered Polyhedral Oligomeric Silsesquioxane Nanocomposites for Low-Dielectric Film Applications”, Chemistry of Materials, 15:19, pp.

3721-3727, 2003.

28. Wei-Jung Lin, Wen-Chang Chen, “ Synthesis and characteri- zation of polyimide/oligomeric methylsilsesquioxane hybrid films”, Polymer International, 53:9, pp. 1245-1252, Jun 2004.

29. J. L. Hedrick, H. J. Cha, R. D. Miller, D. Y. Yoon, H. R. Brown, S.

Srinivasan, R. Di Pietro, R. F. Cook, J. P. Hummel, D. P. Klaus, E. G.

Liniger, E. E. Simonyi, “Polymeric Organic- Inorganic Hybrid Nanocomposites: Preparation of Polyimide- Modified Poly (silsesquioxane) Using Functionalized Poly(amic acid alkyl ester) Precursors”, Macromolecules, 30:26, pp. 8512-8515, 1997.

30. Wei-Chih Liu, Chang-Chung Yang, Wen-Chang Chen, Bao-Tong Dai,

poly(silsesquioxane) films by thermal curing”, Journal of Non-Crystalline Solids, 311:3, pp. 233-240, December 2002.

31. L. Y. Jiang, C. M. Leu, K. H. Wei, “Layered Silicates/Fluorinated Polyimide Nanocomposites for Advanced Dielectric Materials Applications”, Advanced Materials, 14:6, pp. 426-429, March 2002.

32. Z. Ahmad, J. E. Mark, “Polyimide-Ceramic Hybrid Composites by the Sol-Gel Route”, Chemistry of Materials, 13:10, pp. 3320-3330, 2001.

33. V. Arrighi, J. S. Higgins, A. N. Burgess, G. Floudas, “Local dynamics of poly(dimethyl siloxane) in the presence of reinforcing filler particles”, Polymer, 39:25, pp. 6369-6376, December 1998.

34. S.Gagliardi; Arrighi V.; Ferguson R.; Telling M.T.F. “Restricted dynamics in polymer-filler systems”, Physica B: Condensed Matter, 301:1, pp. 110-114, July 2001.

35. V. Arrighi, I. J. McEwen, H. Qian, M. B. Serrano Prieto, “The glass transition and interfacial layer in styrene-butadiene rubber containing silica nanofiller”, Polymer, 2003, 44:20, pp. 6259- 6266, September 2003.

36. G. Tsagaropoulos, A. Eisenberg, “Direct observation of two glass transitions in silica-filled polymers. Implications to the morphology of random ionomers”, Macromolecules, 28:1, pp. 396-398, 1995.

37. G. Tsagaropoulos, A. Eisenberg, “Dynamic Mechanical Study of the Factors Affecting the Two Glass Transition Behavior of Filled Polymers.

Similarities and Differences with Random Ionomers”, Macromolecules, 28:18, pp. 6067-6077, 1995.

38. A. Yim, R. S. Chahal and L. E. St. Pierre, “The effect of polymer—filler interaction energy on the T′g of filled polymers”, Journal of Colloid and Interface Science, 43:3, pp. 583-590, June 1973.

39. Yano, S.; Furukawa, T.; Kodomari, M.; Kurita, K. “Physical Properties of Poly (vinyl alcohol)/Silica Hybrid Prepared by Sol-Gel Process”, Kobunshi Ronbunshu(Japanese Journal of Polymer Science and

Technology), 53:4, pp. 218, 1996.

40. Yuqiang Huang, Shengling Jiang, Libo Wu, Youqing Hua,

“Characterization of LLDPE/nano-SiO2 composites by solid- state dynamic mechanical spectroscopy”, Polymer Testing, 23:1, pp.

9-15, February 2004.

41. B. Jaúregui-Beloqui, J. C. Fernández-García,A. C. Orgilés- Barceló, M. M.

Mahiques-Bujanda, J. M. Martín-Martínez, “Thermoplastic polyurethane-fumed silica composites:influence of the specific surface area of fumed silica onthe viscoelastic and adhesion properties”, Journal of Adhesion Science and Techno- logy, a13, pp. 695-711, 1999.

42. Michele Preghenella, Alessandro Pegoretti, Claudio Migliaresi,

“Thermo-mechanical characterization of fumed silica-epoxy nanocomposites”, Polymer, 46:26, pp. 12065-12072, December 2005.

43. Yangyang Sun, Zhuqing Zhang, Kyoung-Sik Moon, C. P. Wong , “Glass transition and relaxation behavior of epoxy nano- composites”, Journal of Polymer Science Part B: Polymer Physics, 42:21, pp. 3849-3858, November 2004.

44. S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354, pp.

56-58, 1991.

45. M. M. J. Treacy T. W. Ebbesen & J. M. Gibson, “Exceptionally high Young's modulus observed for individual carbon nanotubes”, Nature, 381, pp. 678-680, 1996.

46. T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, T. Thio,

“Electrical conductivity of individual carbon nanotubes”, Nature, 382, pp.

54-56, 1996.

47. B. I. Yakobson, G. J.Clary, R. M. Taylor, V. Chi, F. P. Brooks, S.

Washburn, R. Superfine, “Bending and buckling of carbon nanotubes under large strain”, Nature, 389, pp. 582-584, 1997.

Accounts of Chemical Research, 35:12, pp. 1035 -1044, 2002.

49. A. Allaoui, S. Bai, H. M. Cheng, J. B. Bai, “Mechanical and electrical properties of a MWNT/epoxy composite”, Composites Science and Technology, 62:15, pp. 1993-1998, November 2002.

50. H.Z. Geng, R. Rosen, B. Zheng, H. Shimoda, L. Fleming, J. Liu, O. Zhou,

“Fabrication and Properties of Composites of Poly(ethylene oxide) and Functionalized Carbon Nanotubes”, Advanced Materials, 14:19, pp. 1387-1390, October 2002.

51. Z. Ounaies, C. Park, K. E. Wise, E. J. Siochi and J. S. Harrison, “Electrical properties of single wall carbon nanotube reinforced polyimide composites”, Composites Science and Technology, 63:11, pp.

1637-1646, August 2003.

52. S. Kumar, T. D. Dang, F. E. Arnold, A. R. Bhattacharyya, B. G. Min, X.

Zhang, “Synthesis, Structure, and Properties of PBO/ SWNT Composites”, Macromolecules, 35:24, pp. 9039-9043, 2002.

53. S. Cui, R. Canet, A. Derre, M. Couzi and P. Delhaes “Characteri- zation of multiwall carbon nanotubes and influence of surfactant in the nanocomposite processing”, Carbon, 41:4, pp. 797-809, 2003.

54. O. Regev, P. N. B. ElKati, J. Loos, C. E. Koning, “Preparation of Conductive Nanotube-Polymer Composites Using Latex Tech- nology”, Advanced Materials, 16:3, pp. 248-251, February 2004.

55. L. Qu, Y. Lin, D. E. Hill, B. Zhou, W. Wang, X. Sun, A. Kitaygorodskiy, M. Suarez, J. W. Connell, L. F. Allard, Y. P. Sun,

“Polyimide-Functionalized Carbon Nanotubes: Synthesis and Dispersion in Nanocomposite Films”, Macromolecules, 37:16, pp. 6055-6060, 2004.

56. M. Cadek, J. N. Coleman, V. Barron, K. Hedicke, W. J. Blau,

“Morphological and mechanical properties of carbon-nanotube- reinforced semicrystalline and amorphous polymer composites”, Applied Physics Letters, 81:27, pp. 5123-5125, December 2002.

57. M. A. López Manchado, L. Valentini, J. Biagiotti, J. M. Kenny, “Thermal and mechanical properties of single-walled carbon nanotubes–polypropylene composites prepared by melt proce- ssing”, Carbon, 43:7, pp. 1499-1505, June 2005.

58. Horng-Long Tyan, Kung-Hwa Wei, Tsung-Eong Hsieh, “Mechanical properties of clay-polyimide (BTDA-ODA) nano- composites via ODA-modified organoclay”, Journal of Polymer Science Part B: Polymer Physics, 38:22, pp. 2873-2878, 15 November 2000.

59. Jin-Hae Chang, Dae-Keun Park, Kyo Jin Ihn, “Polyimide nanocomposite with a hexadecylamine clay: Synthesis and characterization”, Journal of Applied Polymer Science, 84:12, pp. 2294-2301, June 2002.

60. Jin-Hae Chang, Kwang Min Park, Donghwan Cho, Hee Sam Yang, Kyo Jin Ihn, “Preparation and characterization of polyimide nanocomposites with different organo-montmorillonites”, Polymer Engineering and Science, 41:9, pp. 1514-1520, September 2001.

61. Kevin D. Ausman, Richard Piner, Oleg Lourie, Rodney S. Ruoff, Mikhail Korobov, “Organic Solvent Dispersions of Single-Walled Carbon Nanotubes: Toward Solutions of Pristine Nanotubes”, The Journal of Physical Chemistry: B, 104:38, pp. 8911 -8915, September 2000.

62. Bao-Ku Zhu, Shu-Hui Xie, Zhi-Kang Xu and You-Yi Xu, “Preparation and properties of the polyimide/multi-walled carbon nanotubes (MWNTs) nanocomposites”, Composites Science and Technology, 66:3-4, pp.

548-554, March 2006.

63. Xiaowen Jiang, Yuezhen Bin, Masaru Matsuo, “Electrical and mechanical properties of polyimide–carbon nanotubes composites fabricated by in situ polymerization”, Polymer, 46:18, 7418-7424, 23 August 2005.

64. I. S. Lee, J. Y. Lee, J. H. Sung and H. J. Choi, “Synthesis and electrorheological characteristics of polyaniline-titanium dioxide hybrid

65. Liuxue Zhang, Peng Liu, Zhixing Su, “Preparation of PANI–TiO2 nanocomposites and their solid-phase photocatalytic degradation”, Polymer Degradation and Stability, 91:9, pp. 2213- 2219, September 2006.

66. Xingwei Li, Wei Chen, Chaoqing Bian, Jinbo He, Ning Xu, Gi Xue,

“Surface modification of TiO2 nanoparticles by polyaniline”, Applied Surface Science, 217:1-4, pp. 16-22, July 2003.

67. Lijuan Zhang, Meixiang Wan, “Polyaniline/TiO2 Composite Nanotubes”, The Journal of Physical Chemistry B, 107:28, pp. 6748-6753, 2003.

68. Ji-Chuan Xu, Wei-Min Liu, Hu-Lin Li, “Titanium dioxide doped polyaniline”, Materials Science and Engineering: C, 25:4, pp.

444-447, June 2005.

69. Ashis Dey, Sukanta De, Amitabha De, and S K De, “Characterization and dielectric properties of polyaniline–TiO2 nanocomposites”, Nanotechnology, 15, pp. 1277-1283, 2004.

70. Xiaomeng Sui, Ying Chu, Shuangxi Xing, Chengzhan Liu, “Synthesis of PANI/AgCl, PANI/BaSO4 and PANI/TiO2 nanocomposites in CTAB/hexanol/water reverse micelle”, Materials Letters, 58:7-8, pp.

1255-1259, March 2004.

71. Xiaomeng Sui, Ying Chu, Shuangxi Xing, Min Yu, Chengzhan Liu,

“Self-organization of spherical PANI/TiO2 nanocomposites in reverse micelles”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 251:1-3, December 2004, pp. 103-107.

72. Xingwei Li, Gengchao Wang, Xiaoxuan Li, Dongming Lu, “Surface properties of polyaniline/nano-TiO2 composites”, Applied Surface Science, 229:1-4, pp. 395-401, May 2004.

73. Feng-Yi Chuang, Sze-Ming Yang, “Titanium Oxide and Polyaniline Core-Shell Nanocomposites”, Synthetic Metals, 152: 1-3, pp.

361-364, September 2005.

74. Jui-Ming Yeh, Chi-Fa Hsieh, Jenn-Huey Jaw, Tai-Hung Kuo, Hsi-Ya

Huang, Ching-Lung Lin, Min-Yu Hsu “Organo-soluble polyimde (ODA-BSAA)/montmorillonite nanocomposite materials prepared by solution dispersion technique” , Journal of Applied Polymer Science, 95:5, pp.1082-1090, January 2005.

75. 王宗雄, “導電高分子聚苯胺之簡介及其應用”, 工業材料雜誌, 175, pp. 165-175, 2001年7月.

76. A. G. Green, A. E. Wodhead, “Action of Amines on Triphenylcarbinol and Tritolylcarbinol”, Journal Chemical Society Transaction, 97, pp. 2388, 1910.

77. Macdiarmid A.G., Chiang J.C., Halperu M., Huang W.S. Mu S.L., Somasiy N.L.D., “Aqueous chemistry and electrochemistry of polyacetylene and "Polyaniline": application to rechargeable batteries.”

Molecular Crystals & Liquid Crystals, 121, pp. 173, 1985.

78. L. T. Yu, M. S. Borredon, M. Jozefowicz, G. Belorgey, R. Buret,

“Experimental study of the direct current conductivity of macromolecular compounds”, Journal of Polymer Science: Polymer Symposia, 10, pp.

2931, 1967.

79. J. J. Langer, E. Uler, K. Golankiewicz, “Toward molecular electronics : an intramolecular p-n junction”, Applied Physics A: Materials Science &

Processing, 43:2, pp. 139-141, June 1987.

80. S. K. Dhawan, D. C. Trivedi, “Synthesis and properties of polyaniline obtained using sulphamic acid”, Journal of Applied Electrochemistry, 22:6, pp. 563-570, June 1992.

81. IUPAC Technical report , “Preparation of a Conducting Polymer”, Polyaniline.

82. 李廷盛 尹其光等 超聲化學 北京 科學出版社 1995 83. Alemdar A,Atici O, and Gungor N. Mater.Lett.,2000,43:57-61

84. Te-Cheng Mo, Hong-Wen Wang, San-Yan Chen, Rui-Xuan Dong,

Chien-Hung Kuo, Yun-Chieh Yeh “Synthesis and Characterization of Polyimide-Silica Nanocomposites Using Novel Fluorine-Modified Silica Nanoparticles” Journal of Applied Polymer Science 104 (2007)

85. Te-Cheng Mo, Hong-Wen Wang, San-Yan Chen, Yun-Chieh Yeh

“ Synthesis and Characterization of Polyimide/Multi-Walled Carbon Nanotube Nanocomposites” Polymer Composites(2007.May Accept)

86. Fagerholm H.B, Mikkola P and Rosenholm J.B,et al. J.Eur. Ceram.Soc 1999,19:41-48

87. 孫靜。博士學位論文,中國科學院上海矽酸鹽研究所,1997。

88. Sun J,Gao L. and Li W. Chem Mater.,2002,14:5169-5172

89. D. Kumar. “Dielectric Properties of plasma polymerized furan thin films capacitors.” Mat. Lett., 41,1,(1997)

90. Yu-Wen Wang, Cheng-Tyng Yen, Wen-Chang Chen, “Photosensitive polyimide/silica hybrid optical materials: Synthesis, properties, and patterning”, Polymer, 46:18, pp. 6959- 6967, 23 August 2005.

91. J. H. Lee, J. S. Im, K. W. Song, J. O. Lee, K. Yoshinaga, “Preparation of Polyimide/Silica Hybrid Composites Based on Polymer-Modified Silica Gel”, Journal of Macromolecular Science, Part A, 41:11, pp. 1345-1357, December 2004.

92. Feng-Xian Qiu, Yu-Ming Zhou, Ju-Zheng Liu, “The synthesis and characteristic study of 6FDA–6FHP–NLO polyimide/SiO2 nanohybrid materials”, European Polymer Journal, 40:4, pp. 713-720, April 2004.

93. Cheng-Tyng Yen, Wen-Chang Chen, Der-Jang Liaw, Hsin-Yi Lu,

“Synthesis and properties of new polyimide–silica hybrid films through both intrachain and interchain bonding”, Polymer, 44:23, pp. 7079-7087, November 2003.

94. Yuan-Jyh Lee, Jieh-Ming Huang, Shiao-Wei Kuo, Jian-Shing Lu, Feng-Chih Chang, “Polyimide and polyhedral oligomeric silsesquioxane

nanocomposites for low-dielectric applications”, Polymer, 46:1, pp.

173-181, 6 January 2005.

95. C. M. Leu, Z. W. Wu, K. H. Wei, “Synthesis and Properties of Covalently Bonded Layered Silicates/Polyimide (BTDA-ODA) Nanocomposites”, Chemistry of Materials, 14:7, pp. 3016-3021, 2002.

96. M. Endo, K. Takeuchi, T. Hiraoka, T. Furuta, T. Kasai, X. Sun, C. H.

Kiang, M. S. Dresselhaus “Stacking nature of graphene layers in carbon nanotubes and nanofibres”. Journal of Physics and Chemistry of Solids, 58:11, pp. 1707-1712, November 1997.

97. Toshio Ogasawara, Yuichi Ishida, Takashi Ishikawa, and Rikio Yokota,

“Characterization of multi-walled carbon nanotube/ phenylethynyl terminated polyimide composites”, Composites Part A: Applied Science and Manufacturing, 35:1, pp. 67-74, January 2004.

98. Benjamin J. Ash, Richard W. Siegel, Linda S. Schadler, “Mechanical Behavior of Alumina/Poly (methyl methacrylate) Nanocomposites”, Macromolecules, 37:4, pp. 1358–1369, February 2004.

99. K. Masenelli-Varlot, E. Reynaud, G. Vigier, J. Varlet, “Mechanical properties of clay-reinforced polyamide”, Journal of Polymer Science Part B: Polymer Physics, 40:3, pp. 272-283, 1 February 2002.

100. Xiaowen Jiang, Yuezhen Bin, Masaru Matsuo, “Electrical and mechanical properties of polyimide–carbon nanotubes composites fabricated by in situ polymerization”, Polymer, 46:18, pp. 7418-7424, 23 August 2005.

101. Wei De Zhang, Lu Shen, In Yee Phang, Tianxi Liu, “Carbon Nanotubes Reinforced Nylon-6 Composite Prepared by Simple Melt-Compounding”, Macromolecules, 37:2, pp. 256–259, January 2004.

102. S. Barrau, P. Demont, A. Peigney, C. Laurent, C. Lacabanne, “DC and AC Conductivity of Carbon Nanotubes- Polyepoxy Composites”, Macromolecules, 36:14, pp. 5187-5194, 2003.

673 – 679, June 1977.

104. Jeppe C. Dyre, Thomas B. Schrøder, “Universality of ac conduction in disordered solids”, Reviews of Modern Physics, 72:3, pp. 873-892, July 2000.

105. W. D. Kingery, H. K. Bowen, D. R. Uhlmann, 2nd Edition, Introduction to Ceramics, John Wiley & Sons Inc, 1976.

106. David J. Bergman, Yoseph Imry, “Critical Behavior of the Complex Dielectric Constant near the Percolation Threshold of a Heterogeneous Material”, Physical Review Letters, 39:19, pp. 1222-1225, Nov. 1977.

107. Ce-Wen Nan, “Physics of inhomogeneous inorganic materials”, Progress in Materials Science, 37:1, pp. 1-116, 1993.

108. G.. D. Liang, S.C. Tjong, “Electrical properties of low-density polyethylene/multiwalled carbon nanotube nanocomposites”, Materials Chemistry and Physics, 100:1, pp. 132-137, November 2006.

109. A. Nogales, G. Broza, Z. Roslaniec, K. Schulte, B. S. Sics, S. Hsiao, A.

Sanz, M. C. Garcia-Gutierrez, D. R. Rueda, C. Domingo, T. A. Ezquerra,

“Low Percolation Threshold in Nanocomposites Based on Oxidized Single Wall Carbon Nanotubes and Poly(butylene terephthalate)”, Macromolecules, 37:20, pp. 7669-7672, 2004.

110. Petra Pötschke, Sergej M. Dudkin, Ingo Alig, ” Dielectric spectroscopy on melt processed polycarbonate-- multiwalled carbon nanotube composites”, Polymer, 44:17, 5023-5030, August 2003.

111. B. E. Kilbride, J. N. Coleman, J. Fraysse, P. Fournet, M. Cadek, A. Drury, S. Hutzler, S. Roth, W. J. Blau, “Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films”, Journal of Applied Physics, 92:7, pp.

4024-4030, October 2002.

112. A. Koganemaru, Y. Bin, Y. Agari, M. Matsuo, “Composites of Polyacrylonitrile and Multiwalled Carbon Nanotubes Prepared by

Gelation/Crystallization from Solution”, Advanced Functional Materials, 14:9, pp. 842-850, September, 2004.

113. J. G. Smith, J. W. Connell, D. M. Delozier, P. T. Lillehei, K. A. Watson, Y.

Lin, B. Zhou, Y. -P. Sun, “Space durable polymer/carbon nanotube films for electrostatic charge mitigation”, Polymer, 45:3, pp. 825-836, February 2004.

114. Shi-Jian Su, Noriyuki Kuramoto, “Processable polyaniline– titanium dioxide nanocomposites: effect of titanium dioxide on the conductivity”,

114. Shi-Jian Su, Noriyuki Kuramoto, “Processable polyaniline– titanium dioxide nanocomposites: effect of titanium dioxide on the conductivity”,

相關文件