• 沒有找到結果。

本研究以 7 名健康大學男性受試者,在單次 60 分鐘 70%V‧

O2 peak腳踏車運動

後立即補充碳水化合物,並同時給予肉鹼增補劑。結果顯示在運動後的恢復期補 充碳水化合物及肉鹼增補劑,相較於單獨補充碳水化合物,更能有效提高肌肉肝 醣合成量。本實驗結果正如研究者所假設,在運動後恢復期,可藉由增加脂肪氧 化及降低碳水化合物的利用與氧化,使葡萄糖保留進而合成更多的肌肉肝醣。

參 考 文 獻

Ahlborg, B., Bergström,J., Ekelund,L.G., & Hultman, E. (1967). Muscle glycogen and muscle electrolytes during prolonged physical exercise. Acta Physiologica Scandinavica,. 70, 129-142.

Barnett, C., Costill, D. L., Vukovich, M. D., Cole, K. J., Goodpaster, B. H., Trappe, S.

W., et al. (1994). Effect of L-carnitine supplementation on muscle and blood carnitine content and lactate accumulation during high-intensity sprint cycling.

International Journal of Sport Nutrition, 4(3), 280-288.

Bell, G. I., Kayano, T., Buse, J. B., Burant, C. F., Takeda, J., Lin, D., et al. (1990).

Molecular biology of mammalian glucose transporters. Diabetes Care, 13(3), 198-208.

Bergstrom, J., Hermansen, L., Hultman, E., & Saltin, B. (1967). Diet, muscle glycogen and physical performance. Acta Physiologica Scandinavica, 71(2), 140-150.

Bergstrom, J., & Hultman, E. (1966). Muscle glycogen synthesis after exercise: an enhancing factor localized to the muscle cells in man. Nature, 210(5033), 309-310.

Bergstrom, J., Hultman, E., & Roch-Norlund, A. E. (1972). Muscle glycogen synthetase in normal subjects. Basal values, effect of glycogen depletion by exercise and of a carbohydrate-rich diet following exercise. Scandinavian Journal of Clinical and Laboratory Investigation, 29(2), 231-236.

Bezaire, V., Bruce, C. R., Heigenhauser, G. J., Tandon, N. N., Glatz, J. F., Luiken, J. J., et al. (2006). Identification of fatty acid translocase on human skeletal muscle mitochondrial membranes: essential role in fatty acid oxidation. American Journal of Physiology - Endocrinology and Metabolism, 290(3), E509-515.

Bosch, A. N., Dennis, S. C., & Noakes, T. D. (1994). Influence of carbohydrate ingestion on fuel substrate turnover and oxidation during prolonged exercise.

Journal of Applied Physiology, 76(6), 2364-2372.

Brass, E. P., Hoppel, C. L., & Hiatt, W. R. (1994). Effect of intravenous L-carnitine on carnitine homeostasis and fuel metabolism during exercise in humans. Clinical Pharmacology and Therapeutics, 55(6), 681-692.

Brass, E. P. (1995). Pharmacokinetic considerations for the therapeutic use of carnitine in hemodialysis patients. Clinical Therapeutics, 17(2), 176-185;

discussion 175.

Brass, E. P. (2000). Supplemental carnitine and exercise. The American Journal of

Clinical Nutrition, 72(2 Suppl), 618S-623S.

Bremer, J. (1962). Carnitine in intermediary metabolism. The metabolism of fatty acid esters of carnitine by mitochondria. The Journal of Biological Chemistry, 237, 3628-3632.

Brooks, G. A. (1985). Anaerobic threshold: review of the concept and directions for future research. Medicine and Science in Sports and Exercise, 17(1), 22-34.

Brooks, G. A., & Mercier, J. (1994). Balance of carbohydrate and lipid utilization during exercise: the "crossover" concept. Journal of Applied Physiology, 76(6), 2253-2261.

Brozinick, J. T., Jr., & Birnbaum, M. J. (1998). Insulin, but not contraction, activates Akt/PKB in isolated rat skeletal muscle. The Journal of Biological Chemistry, 273(24), 14679-14682.

Burke, L. M., Collier, G. R., & Hargreaves, M. (1993). Muscle glycogen storage after prolonged exercise: effect of the glycemic index of carbohydrate feedings.

Journal of Applied Physiology, 75(2), 1019-1023.

Burke, L. M., Collier, G. R., & Hargreaves, M. (1998). Glycemic index--a new tool in sport nutrition? International Journal of Sport Nutrition, 8(4), 401-415.

Bussau, V. A., Fairchild, T. J., Rao, A., Steele, P., & Fournier, P. A. (2002).

Carbohydrate loading in human muscle: an improved 1 day protocol.

European Journal of Applied Physiology, 87(3), 290-295.

Carter, H. E., Bhattacharyya, P. K., Weidman, K. R., & Fraenkel, G. (1952). Chemical studies on vitamin BT isolation and characterization as carnitine. Archives of Biochemistry and Biophysics, 38, 405-416.

Clouet, P., Sempore, G., Tsoko, M., Gresti, J., Demarquoy, J., Niot, I., et al. (1996).

Effect of short- and long-term treatments by a low level of dietary L-carnitine on parameters related to fatty acid oxidation in Wistar rat. Biochimica et Biophysica Acta, 1299(2), 191-197.

Coderre, L., Kandror, K. V., Vallega, G., & Pilch, P. F. (1995). Identification and characterization of an exercise-sensitive pool of glucose transporters in skeletal muscle. Journal of Biological Chemistry, 270(46), 27584-27588.

Colombani, P., Wenk, C., Kunz, I., Krahenbuhl, S., Kuhnt, M., Arnold, M., et al.

(1996). Effects of L-carnitine supplementation on physical performance and energy metabolism of endurance-trained athletes: a double-blind crossover field study. European Journal of Applied Physiology and Occupational physiology, 73(5), 434-439.

Costill, D. L., Coyle, E., Dalsky, G., Evans, W., Fink, W., & Hoopes, D. (1977).

Effects of elevated plasma FFA and insulin on muscle glycogen usage during exercise. Journal of Applied Physiology, 43(4), 695-699.

Costill, D. L., Sherman, W. M., Fink, W. J., Maresh, C., Witten, M., & Miller, J. M.

(1981). The role of dietary carbohydrates in muscle glycogen resynthesis after strenuous running. The American Journal of Clinical Nutrition, 34(9),

1831-1836.

Davis, J. A., Vodak, P., Wilmore, J. H., Vodak, J., & Kurtz, P. (1976). Anaerobic threshold and maximal aerobic power for three modes of exercise. Journal of Applied Pysiology, 41(4), 544-550.

Davis, J. A. (1985). Anaerobic threshold: review of the concept and directions for future research. Medicine and Science in Sports and Exercise, 17(1), 6-21.

Decombaz, J., Deriaz, O., Acheson, K., Gmuender, B., & Jequier, E. (1993). Effect of L-carnitine on submaximal exercise metabolism after depletion of muscle glycogen. Medicine and Science in Sports and Exercise, 25(6), 733-740.

Derave, W., Lund, S., Holman, G. D., Wojtaszewski, J., Pedersen, O., & Richter, E. A.

(1999). Contraction-stimulated muscle glucose transport and GLUT-4 surface content are dependent on glycogen content. American Journal of Physiology, 277(6 Pt 1), E1103-1110.

Dodd, S., Powers, S. K., Callender, T., & Brooks, E. (1984). Blood lactate

disappearance at various intensities of recovery exercise. Journal of Applied Physiology, 57(5), 1462-1465.

Douen, A. G., Ramlal, T., Rastogi, S., Bilan, P. J., Cartee, G. D., Vranic, M., et al.

(1990). Exercise induces recruitment of the "insulin-responsive glucose transporter". Evidence for distinct intracellular insulin- and

exercise-recruitable transporter pools in skeletal muscle. Journal of Biological Chemistry, 265(23), 13427-13430.

Dragan, G. I., Vasiliu, A., Georgescu, E., & Dumas, I. (1987). Studies concerning chronic and acute effects of L-carnitine on some biological parameters in elite athletes. Physiologie, 24(1), 23-28.

Dragan, A. M., Vasiliu, D., Eremia, N. M., & Georgescu, E. (1987). Studies

concerning some acute biological changes after endovenous administration of 1 g l-carnitine, in elite athletes. Physiologie, 24(4), 231-234.

Engel, A. G., Rebouche, C. J., Wilson, D. M., Glasgow, A. M., Romshe, C. A., &

Cruse, R. P. (1981). Primary systemic carnitine deficiency. II. Renal handling of carnitine. Neurology, 31(7), 819-825.

Fairchild, T. J., Fletcher, S., Steele, P., Goodman, C., Dawson, B., & Fournier, P. A.

(2002). Rapid carbohydrate loading after a short bout of near

maximal-intensity exercise. Medicine and Science in Sports and Exercise, 34(6), 980-986.

Foureaux, G., Castro Pinto, K. M., & Damaso, A. (2006). Effects of excess

post-exercise oxygen consumption and resting metabolic rate in energetic cost.

Revista Brasileira de Medicina do Esporte, 12, 351e-355e.

Frayn, K. N. (1983). Calculation of substrate oxidation rates in vivo from gaseous exchange. Journal of Applied Physiology, 55(2), 628-634.

Frayn, K. N. (2003). The glucose-fatty acid cycle: a physiological perspective.

Biochemical Society Transactions,31, 1115-1119.

Fritz, I. (1955). The effect of muscle extracts on the oxidation of palmitic acid by liver slices and homogenates. Acta Physiologica Scandinavica, 34(4), 367-385.

Fritz, I. B., & Marquis, N. R. (1965). The role of acylcarnitine esters and carnitine palmityltransferase in the transport of fatty acyl groups across mitochondrial membranes. Proceedings of the National Academy of Sciences of the United States of America, 54(4), 1226-1233.

Fritz, I. B., & Mc, E. B. (1959). Effects of carnitine on fatty-acid oxidation by muscle.

Science, 129(3345), 334-335.

Fritz, I. B., & Yue, K. T. (1963). Long-chain carnitine acyltransferase and the role of acylcarnitine derivatives in the catalytic increase of fatty acid oxidation induced by carnitine. Journal of Lipid Research, 4, 279-288.

Frosig, C., Jorgensen, S. B., Hardie, D. G., Richter, E. A., & Wojtaszewski, J. F.

(2004). 5'-AMP-activated protein kinase activity and protein expression are regulated by endurance training in human skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 286(3), E411-417.

Gloggler, A., Bulla, M., & Furst, P. (1990). Kinetics of intravenously administered carnitine in haemodialysed children. Journal of Pharmaceutical and Biomedical Analysis, 8(5), 411-414.

Gollnick, P. D. (1985). Metabolism of substrates: energy substrate metabolism during exercise and as modified by training. Federation Proceedings, 44(2), 353-357.

Green, H. J. (1991). How important is endogenous muscle glycogen to fatigue in prolonged exercise? Canadian Journal of Physiology and Pharmacology, 69(2), 290-297.

Green, H. J., & Hughson, R. L. (1985). Anaerobic threshold: review of the concept and directions for future research. Medicine and Science in Sports and Exercise, 17(5), 621-624.

Greig, C., Finch, K. M., Jones, D. A., Cooper, M., Sargeant, A. J., & Forte, C. A.

(1987). The effect of oral supplementation with L-carnitine on maximum and submaximum exercise capacity. European Journal of Applied Physiology and Occupational Physiology, 56(4), 457-460.

Gudjonsson, H., Li, B. U., Shug, A. L., & Olsen, W. A. (1985). In vivo studies of intestinal carnitine absorption in rats. Gastroenterology, 88(6), 1880-1887.

Hargreaves, M. (2004). Muscle glycogen and metabolic regulation. Proceedings of the Nutrition Society, 63(2), 217-220.

Harris, R. C., Edwards, R. H., Hultman, E., Nordesjo, L. O., Nylind, B., & Sahlin, K.

(1976). The time course of phosphorylcreatine resynthesis during recovery of the quadriceps muscle in man. Pflugers Archiv European Journal of

Physiology, 367(2), 137-142.

Hiatt, W. R., Regensteiner, J. G., Wolfel, E. E., Ruff, L., & Brass, E. P. (1989).

Carnitine and acylcarnitine metabolism during exercise in humans.

Dependence on skeletal muscle metabolic state. The Journal of Clinical Investigation, 84(4), 1167-1173.

Holloszy, J. O. (1982). Muscle metabolism during exercise. Archives of Physical Medicine and Rehabilitation, 63(5), 231-234.

Holloszy, J. O. (2005). Exercise-induced increase in muscle insulin sensitivity.

Journal of Applied Physiology, 99(1), 338-343.

Hultman, E., Cederblad, G., & Harper, P. (1991). Carnitine administration as a tool of modify energy metabolism during exercise. European Journal of Applied Physiology and Occupational Physiology, 62(6), 450.

Ivy, J. L. (1977). Role of insulin during exercise-induced glycogenesis in muscle:

effect on cyclic AMP. American Journal of Physiology, 233(6), E509-513.

Ivy, J. L., Katz, A. L., Cutler, C. L., Sherman, W. M., & Coyle, E. F. (1988). Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion.

Journal of Applied Physiology, 64(4), 1480-1485.

Ivy, J. L., Zderic, T. W., & Fogt, D. L. (1999). Prevention and treatment of

non-insulin-dependent diabetes mellitus. Exercise and Sport Sciences Reviews, 27(1), 1-35.

Ivy, J. L., Goforth, H. W., Jr., Damon, B. M., McCauley, T. R., Parsons, E. C., & Price, T. B. (2002). Early postexercise muscle glycogen recovery is enhanced with a carbohydrate-protein supplement. Journal of Applied Physiology, 93(4), 1337-1344.

Ivy, J. L. (2004). Muscle insulin resistance amended with exercise training: role of GLUT4 expression. Medicine and Science in Sports and Exercise, 36(7), 1207-1211.

Jeukendrup, A. E., Wagenmakers, A. J., Stegen, J. H., Gijsen, A. P., Brouns, F., &

Saris, W. H. (1999). Carbohydrate ingestion can completely suppress endogenous glucose production during exercise. American Journal of Physiology, 276(4 Pt 1), E672-683.

Karlsson, J., & Saltin, B. (1971). Diet, muscle glycogen, and endurance performance.

Journal of Applied Physiology, 31(2), 203-206.

Kawanaka, K., Han, D. H., Nolte, L. A., Hansen, P. A., Nakatani, A., & Holloszy, J. O.

(1999). Decreased insulin-stimulated GLUT-4 translocation in

glycogen-supercompensated muscles of exercised rats. American Journal of Physiology, 276(5 Pt 1), E907-912.

Kawanaka, K., Nolte, L. A., Han, D. H., Hansen, P. A., & Holloszy, J. O. (2000).

Mechanisms underlying impaired GLUT-4 translocation in

glycogen-supercompensated muscles of exercised rats. American Journal of Physiology - Endocrinology and Metabolism, 279(6), E1311-1318.

Kuipers, H., Verstappen, F. T., Keizer, H. A., Geurten, P., & van Kranenburg, G.

(1985). Variability of aerobic performance in the laboratory and its physiologic correlates. International Journal of Sports Medicine, 6(4), 197-201.

Kuo, C. H., Browning, K. S., & Ivy, J. L. (1999). Regulation of GLUT4 protein expression and glycogen storage after prolonged exercise. Acta Physiologica Scandinavica, 165(2), 193-201.

Kuo, C. H., Ding, Z., & Ivy, J. L. (1996). Interaction of exercise training and clenbuterol on GLUT-4 protein in muscle of obese Zucker rats. American Journal of Physiology, 271(5 Pt 1), E847-854.

Kuo, C. H., Hunt, D. G., Ding, Z., & Ivy, J. L. (1999). Effect of carbohydrate supplementation on postexercise GLUT-4 protein expression in skeletal muscle. Journal of Applied Physiology, 87(6), 2290-2295.

Long, Y. C., & Zierath, J. R. (2006). AMP-activated protein kinase signaling in metabolic regulation. Journal of Clinical Investigation, 116(7), 1776-1783.

Marconi, C., Sassi, G., Carpinelli, A., & Cerretelli, P. (1985). Effects of L-carnitine loading on the aerobic and anaerobic performance of endurance athletes.

European Journal of Applied Physiology and Occupational Physiology, 54(2), 131-135.

McCoy, M., Proietto, J., & Hargreaves, M. (1996). Skeletal muscle GLUT-4 and postexercise muscle glycogen storage in humans. Journal of Applied Physiology, 80(2), 411-415.

McGarry, J. D., & Brown, N. F. (1997). The mitochondrial carnitine

palmitoyltransferase system. From concept to molecular analysis. European Journal of Biochemistry, 244(1), 1-14.

Minkler, P. E., Brass, E. P., Hiatt, W. R., Ingalls, S. T., & Hoppel, C. L. (1995).

Quantification of carnitine, acetylcarnitine, and total carnitine in tissues by high-performance liquid chromatography: the effect of exercise on carnitine homeostasis in man. Analytical Biochemistry, 231(2), 315-322.

Molfino, A., Cascino, A., Conte, C., Ramaccini, C., Rossi Fanelli, F., & Laviano, A.

(2010). Caloric restriction and L-carnitine administration improves insulin

sensitivity in patients with impaired glucose metabolism. Journal of Parenteral and Enteral Nutrition, 34(3), 295-299.

Murthy, M. S., & Pande, S. V. (1987). Malonyl-CoA binding site and the overt

carnitine palmitoyltransferase activity reside on the opposite sides of the outer mitochondrial membrane. Proceedings of the National Academy of Sciences of the United States of America, 84(2), 378-382.

Natali, A., Santoro, D., Brandi, L. S., Faraggiana, D., Ciociaro, D., Pecori, N., et al.

(1993). Effects of acute hypercarnitinemia during increased fatty substrate oxidation in man. Metabolism: Clinical and Experimenta, 42(5), 594-600.

Neary, J. P., Martin, T. P., Reid, D. C., Burnham, R., & Quinney, H. A. (1992). The effects of a reduced exercise duration taper programme on performance and muscle enzymes of endurance cyclists. European Journal of Applied

Physiology and Occupational Physiology, 65(1), 30-36.

Nielsen, J. N., Derave, W., Kristiansen, S., Ralston, E., Ploug, T., & Richter, E. A.

(2001). Glycogen synthase localization and activity in rat skeletal muscle is strongly dependent on glycogen content. The Journal of Physiology, 531(Pt 3), 757-769.

Oyono-Enguelle, S., Freund, H., Ott, C., Gartner, M., Heitz, A., Marbach, J., et al.

(1988). Prolonged submaximal exercise and L-carnitine in humans. European Journal of Applied Physiology and Occupational Physiology, 58(1-2), 53-61.

Pande, S. V. (1975). A mitochondrial carnitine acylcarnitine translocase system.

Proceedings of the National Academy of Sciences of the United States of America, 72(3), 883-887.

Perseghin, G., Price, T. B., Petersen, K. F., Roden, M., Cline, G. W., Gerow, K., et al.

(1996). Increased glucose transport-phosphorylation and muscle glycogen synthesis after exercise training in insulin-resistant subjects. New England Journal of Medicine, 335(18), 1357-1362.

Pessin, J. E., & Bell, G. I. (1992). Mammalian facilitative glucose transporter family:

structure and molecular regulation. Annual Review of Physiology, 54, 911-930.

Pessin, J. E., & Saltiel, A. R. (2000). Signaling pathways in insulin action: molecular targets of insulin resistance. Journal of Clinical Investigation, 106(2),

165-169.

Price, T. B., Rothman, D. L., Taylor, R., Avison, M. J., Shulman, G. I., & Shulman, R.

G. (1994). Human muscle glycogen resynthesis after exercise:

insulin-dependent and -independent phases. Journal of Applied Physiology, 76(1), 104-111.

Randle, P. J. (1994). Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years. Nuffield Department of Clinical

Biochemistry, 14(4) ,263-283.

Rebouche, C. J., Lombard, K. A., & Chenard, C. A. (1993). Renal adaptation to

dietary carnitine in humans. The American Journal of Clinical Nutrition, 58(5), 660-665.

Reed, M. J., Brozinick, J. T., Jr., Lee, M. C., & Ivy, J. L. (1989). Muscle glycogen storage postexercise: effect of mode of carbohydrate administration. Journal of Applied Physiology, 66(2), 720-726.

Richter, E. A., Nielsen, J. N., Jorgensen, S. B., Frosig, C., Birk, J. B., & Wojtaszewski, J. F. (2004). Exercise signalling to glucose transport in skeletal muscle.

Proceedings of the Nutrition Society, 63(2), 211-216.

Romijn, J. A., Coyle, E. F., Sidossis, L. S., Gastaldelli, A., Horowitz, J. F., Endert, E., et al. (1993). Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. American Journal of Physiology, 265(3 Pt 1), E380-391.

Sahlin, K. (1990). Muscle carnitine metabolism during incremental dynamic exercise in humans. Acta Physiologica Scandinavica, 138(3), 259-262.

Sahlin, K., Katz, A., & Broberg, S. (1990). Tricarboxylic acid cycle intermediates in human muscle during prolonged exercise. American Journal of Physiology, 259(5 Pt 1), C834-841.

Saris, W. H. (1993). The role of exercise in the dietary treatment of obesity.

International Journal of Obesity, 17 Suppl 1, S17-21.

Sherman, W. M., Costill, D. L., Fink, W. J., & Miller, J. M. (1981). Effect of

exercise-diet manipulation on muscle glycogen and its subsequent utilization during performance. International Journal of Sports Medicine, 2(2), 114-118.

Sherman, W. M., Doyle, J. A., Lamb, D. R., & Strauss, R. H. (1993). Dietary carbohydrate, muscle glycogen, and exercise performance during 7 d of training. American Journal of Clinical Nutrition, 57(1), 27-31.

Siliprandi, N., Di Lisa, F., Pieralisi, G., Ripari, P., Maccari, F., Menabo, R., et al.

(1990). Metabolic changes induced by maximal exercise in human subjects following L-carnitine administration. Biochimica et Biophysica Acta, 1034(1), 17-21.

Soop, M., Bjorkman, O., Cederblad, G., Hagenfeldt, L., & Wahren, J. (1988).

Influence of carnitine supplementation on muscle substrate and carnitine metabolism during exercise. Journal of Applied Physiology, 64(6), 2394-2399.

Stephens, F. B., Constantin-Teodosiu, D., & Greenhaff, P. L. (2007). New insights concerning the role of carnitine in the regulation of fuel metabolism in skeletal muscle. The Journal of Physiology, 581(Pt 2), 431-444.

Stephens, F. B., Constantin-Teodosiu, D., Laithwaite, D., Simpson, E. J., & Greenhaff,

P. L. (2006). An acute increase in skeletal muscle carnitine content alters fuel metabolism in resting human skeletal muscle. The Journal of Clinical

Endocrinology and Metabolism, 91(12), 5013-5018.

Trappe, S. W., Costill, D. L., Goodpaster, B., Vukovich, M. D., & Fink, W. J. (1994).

The effects of L-carnitine supplementation on performance during interval swimming. International Journal of Sports Medicine, 15(4), 181-185.

van Aggel-Leijssen, D. P., Saris, W. H., Homan, M., & van Baak, M. A. (2001). The effect of exercise training on beta-adrenergic stimulation of fat metabolism in obese men. International Journal of Obesity and Related Metabolic Disorders, 25(1), 16-23.

Vecchiet, L., Di Lisa, F., Pieralisi, G., Ripari, P., Menabo, R., Giamberardino, M. A., et al. (1990). Influence of L-carnitine administration on maximal physical

exercise. European Journal of Applied Physiology and Occupational Physiology, 61(5-6), 486-490.

Vukovich, M. D., Costill, D. L., & Fink, W. J. (1994). Carnitine supplementation:

effect on muscle carnitine and glycogen content during exercise. Medicine and Science in Sports and Exercise, 26(9), 1122-1129.

Williams, J. H., Powers, S. K., & Stuart, M. K. (1986). Hemoglobin desaturation in highly trained athletes during heavy exercise. Medicine and Science in Sports and Exercise, 18(2), 168-173.

Woeltje, K. F., Kuwajima, M., Foster, D. W., & McGarry, J. D. (1987).

Characterization of the mitochondrial carnitine palmitoyltransferase enzyme system. II. Use of detergents and antibodies. The Journal of Biological Chemistry, 262(20), 9822-9827.

Wojtaszewski, J. F., Hansen, B. F., Gade, Kiens, B., Markuns, J. F., Goodyear, L. J., et al. (2000). Insulin signaling and insulin sensitivity after exercise in human skeletal muscle. Diabetes, 49(3), 325-331.

Wolever, T. M. (2004). Effect of blood sampling schedule and method of calculating the area under the curve on validity and precision of glycaemic index values.

The British Journal of Nutrition, 91(2), 295-301.

Wu, C. L., Nicholas, C., Williams, C., Took, A., & Hardy, L. (2003). The influence of high-carbohydrate meals with different glycaemic indices on substrate

utilisation during subsequent exercise. The British journal of nutrition, 90(6), 1049-1056.

Wyss, V., Ganzit, G. P., & Rienzi, A. (1990). Effects of L-carnitine administration on VO2max and the aerobic-anaerobic threshold in normoxia and acute hypoxia.

European Journal of Applied Physiology and Occupational Physiology, 60(1), 1-6.

Zierath, J. R., Krook, A., & Wallberg-Henriksson, H. (2000). Insulin action and insulin resistance in human skeletal muscle. Diabetologia, 43(7), 821-835.

附錄一 人體試驗委員會審查意見表

附錄二 受試者須知

附錄三 受試者同意書

研究題目:運動後恢復期補充碳水化合物與肉鹼對人體肌肉肝醣合成之影響 指導教授:呂香珠博士、程一雄博士

研 究 生:林秋騰

研究單位:國立臺中教育大學體育學系碩士班

聯絡電話:(手機)0920-943867 (家)049-2371589

為了保護受試者的健康與權利,研究者有責任將實驗過程以及可能發生的危 險說明清楚,並隨時回答受試者所提出的問題,請受試者安心加入實驗。受試者 若臨時改變意願無法參加實驗,或身體出現不適情形時,可隨時停止或退出實驗 不受任何限制,但務必事先通知研究者。

參與本實驗之受試者,必須瞭解流程與同意下列事項:

一、受試者必須詳細閱讀「受試者須知」,以瞭解整個實驗目的、過程、受試者 的權益以及相關要求配合的事項(如附錄二)。

二、受試者必須填寫「受試者同意書」(如附錄三),以確定願意全程參與本實 驗。

三、受試者必須參加實驗前之說明會,以瞭解實驗過程、注意事項及配合事宜。

四、實驗期間受試者必須做好生活習慣的管理。

五、實驗期間受試者必須控制每日的飲食習慣。

六、實驗期間受試者要避免額外激烈的運動訓練。

七、實驗期間受試者不得服用任何會影響實驗結果之藥物或含咖啡因的飲料。

如您願意參與本實驗,請在同意書上之姓名欄內簽名,以及填寫聯絡資料,

表示同意並願意遵守「受試者須知」及同意書內所列之規定。

受試者簽名: (簽名)

聯絡電話: 手機:

中 華 民 國 九 十 九 年 月 日

附錄四 混合餐點營養成分表

體重(公斤) 70.0

CHO (g/100g)

CHO

CHO

相關文件