• 沒有找到結果。

負載切換實作波形

第五章 實作電路與結果

5.5 負載切換實作波形

負載切換造成無感測控制進入暫態,因此必須考慮讓電路能在最短的時間內由不穩 定的暫態回復到穩態中。根據圖 5.8,當切載開始時負載R 從空載切換至g 40,由於電 流增大,負載由輕載切入重載,估算換相時間降至約 2.18ms,馬達轉速瞬間降至約 2300rpm,但約在 1 秒內即能回復到穩定的狀態。根據無感測控制實作,其不論是在穩 態實作或者是暫態實作,系統均能維持穩定。

TH

*

TH

圖 5.8 負載切換暫態實作波形

第六章 結論

本文呈現直流無刷馬達無位置感測之換相時間控制,以及無感測速度估測的設計與 分析結果,並以模擬與實驗的方式,驗證控制架構的可行性。所採用的架構主要使用由 電阻、電容以及三個電壓比較器組成的反應電動勢偵測電路,以 FPGA 為實現平台,提 出利用反應電動勢零交會點檢測轉子位置以計算出換相時間,進而達成馬達的速度回授 控制。整個系統的優點為利用偵測反應電動勢,取代霍爾位置感測元件。

無感測速度回授控制系統 FPGA 電路設計,其實現採用階層式、模組化的設計方 式,速度控制系統主要包含利用三位置訊號之零交會點估測電路、換相點產生電路、無 感測換相時間估測電路、PI 回授控制電路以及 PWM 產生電路。而透過 PSIM,整合馬 達模型以及速度控制系統進行系統層次模擬,驗證電路功能的正確性。

由實驗結果觀察可知在穩態時,不同負載情況下,換相時間與時間命令之誤差穩定 在一定的範圍內。當命令變化暫態的情況下,馬達也能夠很快的回復到所下達的轉速命 令。

本文所提出的方法尚有未臻完善之處。首先在啟動時,未考慮避免馬達反轉啟動。

使用同步加速的概念同時調整 PWM 責任周期與換相頻率,以達到馬達反應電動勢與相 電流同相。此一同步調整斜率需經過設計,當馬達不一樣時,此斜率需做重新調整。如 能搭配更好的啟動方式,將會使無感測啟動更加容易。由於馬達在低轉速時,反應電動 勢較不明顯,零交會點就更難準確偵測,使得馬達在低轉速時穩態誤差增大,雖然已經 使用平均法減少因零交會點不穩定所造成的換相時間估測誤差,卻仍無法完全消除,加 入一補償機制消除估測誤差是未來可進一步研究的方向,如此將能使此無感測控制換相 更為精準。

參考文獻

[1] Q. Han, N. Samoylenko, and J. Jatskevich, “Average-Value Modeling of Brushless DC Motors with 120 Voltage Source Inverter,” IEEE Trans. Energy Convers., vol. 23, no.

2, pp. 423-432, June 2008.

[2] M. H. Saied, M. Z. Mostafa, T. M. Abdel-Moneim, and H. A. Yousef, “On Three-Phase Six-Switch Voltage Source Inverter: A 150-degree Conduction Mode,” in Proc. of ISIE’06, pp. 1504-1509.

[3] H. C. Chen, Y. C. Chang, and C. K. Huang, “Practical Sensorless Control for Inverter-Fed BDCM Compressors,” IET Proc. Electric Power Applications, vol. 1, no. 1, pp. 127-132, Jan. 2007.

[4] G. J. Su and W. Mckeever, “Low-Cost Sensorless Control of Brushless DC Motors with Improved Speed Range,” IEEE Trans. Power Electron., vol. 19, no. 2, pp. 296-302, March 2004.

[5] Q. Jiang, C. Bi, and R. Huang, “A New Phase-Delay-Free Method to Detect Back-EMF Zero-Crossing Points for Sensorless Control of Spindle Motors,” IEEE Trans. Magnetics, vol. 41, no. 7, pp. 2287-2294, July 2005.

[6] D. K. Kim, K. W. Lee, and B. I. Kwon, “Commutation Torque Ripple Reduction in a Position Sensorless Brushless DC Motor Drive,” IEEE Trans. Power Electron., vol. 21, no. 6, pp. 1762-1768, 2006.

[7] K. W. Lee, D. K. Kim, B. T. Kim, and B. I. Kwon, “A Novel Starting Method of the Surface Permanent-Magnet BLDC Motors without Position Sensor for Reciprocating Compressor,” IEEE Trans. Ind. Appl., vol. 44, no. 1, pp. 85-92, 2008.

[8] J. Shao, “An Improved Microcontroller-Based Sensorless Brushless DC (BLDC) Motor Drive for Automotive Applications,” IEEE Trans. Ind. Appl., vol. 42, no. 5, pp.

1216-1221, Sep., 2006.

[9] Y. S. Lai and Y. K. Lin, “Novel Back-EMF Detection Technique of Brushless DC Motor Drives for Wide Range Control Without Using Current and Position Sensorls,” IEEE

[10] H. C. Chen and C. M. Liaw, “Current-mode Control of Sensorless BDCM Drive with Intelligent Commutation Tuning,” IEEE Trans. Power Electron., vol. 17, no. 5, pp.

747-756, 2002.

[11] P. C . Krause, O. Wasynczuk, and S. D. Sudhoff, “Analysis of Electric Machinery and Drive Systems”, IEEE Press, Wiley-Interscience.

[12] T. Weng, Y. Inoue, S. Morimoto, and M. Sanada, “Expansion of Operating Range of Sensorless PMSM Drive by Square-Wave Opeartion at High Speed,” in Proc. of PCC’97, pp. 2036-2042.

[13] A. Lelkes, J. Krotsch, and R. W. De Doncker, “Low-Noise External Rotor BLDC Motor for Fan Applications,” in Proc. of IAS’02, pp. 2036-2042.

[14] C. M. Wang, S. J. Wang, S. K. Lin and H. Y. Lin, “A Novel Twelve-Step Sensorless Drive Scheme for a Brushless DC Motor,” IEEE Trans. Magnetics, vol. 43, no. 6, pp.

2555-2557, June 2007.

[15] S. Saha, Tazawa, T. Iijima, K. Narazaki, H. Murakami, and Y. Honda, “A Novel Sensorless Control Drive for an Interior Permanent Magnet Motor,” in Proc. of IECON’01, pp. 1655-1660.

[16] M. Yasohara, T. Tsubouchi, and K. Sugiura, “Motor Driving Device for Motor Having Multi-Phase Coils,” US Patent 6710559, 2004.

[17] P. P. Acarnley and J. F. Watson, “Review of Position-Sensorless Operation of Brushless Permanent-Magnet Machines,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 352-362, Apr. 2006.

[18] K. Iizuka, “Microcomputer Control for Sensorless Brushless Motor,” IEEE Trans. Ind.

Appl., vol. 27, no. 3, pp. 595-601, May/Jun. 1985.

[19] R. C. Becerra, M. Ehsani, and T. M. Jahns, “Four-quadrant Brushless ECM Drive with Integrated Current Regulation,” IEEE Trans. Ind. Appl., vol. 28, pp. 833-841, 1992.

[20] J. C. Moreira, “Indirect Sensing for Rotor Flux Position of Permanent Magnet AC Motors Operating over a Wide Speed Range,” IEEE Trans. Ind. Appl., vol. 32, pp.

1394-1401, 1996.

[21] P. Pillay and R. Krishnan, “Modeling of Permanent Magnet Motor Drives,” IEEE Trans.

Ind. Electron., vol. 35, pp. 537-541, 1988.

[22] N. Mohan, T. M. Undeland, and W. P. Robins, “Power Electronics – Converters, Applications and Design,” John Wiley & Sons.

[23] C. T. Lin, C. W. Hung, and C. W. Liu, “Position Sensorless Control for Four-Switch Three-Phase Brushless DC Motor Drives,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 438-444, Jan. 2008.

[24] T. A. Lipo and D. G. Holmes, “Pulse Width Modulation for Power Converter: Principles and Practice,” John Wiley & Sons.

相關文件