• 沒有找到結果。

1. Umar, A., B.K. Dunn, and P. Greenwald, Future directions in cancer prevention.

Nat Rev Cancer, 2012. 12(12): p. 835-48.

2. Rosenbaum, E. and M.A. Carducci, Pharmacotherapy of hormone refractory prostate cancer: new developments and challenges. Expert Opin Pharmacother, 2003. 4(6): p. 875-87.

3. Tu, S.M. and S.H. Lin, Clinical aspects of bone metastases in prostate cancer.

Cancer Treat Res, 2004. 118: p. 23-46.

4. Jacobs, S.C., Spread of prostatic cancer to bone. Urology, 1983. 21(4): p.

337-44.

5. Shah, R.B., et al., Androgen-independent prostate cancer is a heterogeneous group of diseases: lessons from a rapid autopsy program. Cancer Res, 2004.

64(24): p. 9209-16.

6. Lee, Y.C., et al., Androgen depletion up-regulates cadherin-11 expression in prostate cancer. J Pathol, 2010. 221(1): p. 68-76.

7. Tantivejkul, K., L.M. Kalikin, and K.J. Pienta, Dynamic process of prostate cancer metastasis to bone. J Cell Biochem, 2004. 91(4): p. 706-17.

8. Lehr, J.E. and K.J. Pienta, Preferential adhesion of prostate cancer cells to a human bone marrow endothelial cell line. J Natl Cancer Inst, 1998. 90(2): p.

118-23.

9. Sikes, R.A., et al., Cellular interactions in the tropism of prostate cancer to bone.

Int J Cancer, 2004. 110(4): p. 497-503.

10. Taichman, R.S., et al., Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res, 2002. 62(6): p. 1832-7.

37

11. Koeneman, K.S., F. Yeung, and L.W. Chung, Osteomimetic properties of prostate cancer cells: a hypothesis supporting the predilection of prostate cancer metastasis and growth in the bone environment. Prostate, 1999. 39(4): p.

246-61.

12. Okazaki, M., et al., Molecular cloning and characterization of OB-cadherin, a new member of cadherin family expressed in osteoblasts. J Biol Chem, 1994.

269(16): p. 12092-8.

13. Takeichi, M., Morphogenetic roles of classic cadherins. Curr Opin Cell Biol, 1995. 7(5): p. 619-27.

14. Gumbiner, B.M., Regulation of cadherin-mediated adhesion in morphogenesis.

Nat Rev Mol Cell Biol, 2005. 6(8): p. 622-34.

15. Wheelock, M.J., et al., Cadherin switching. J Cell Sci, 2008. 121(Pt 6): p.

727-35.

16. Tomita, K., et al., Cadherin switching in human prostate cancer progression.

Cancer Res, 2000. 60(13): p. 3650-4.

17. Schmidmaier, R. and P. Baumann, ANTI-ADHESION evolves to a promising therapeutic concept in oncology. Curr Med Chem, 2008. 15(10): p. 978-90.

18. Ye, X.C., et al., Biology and clinical management of prostate cancer bone metastasis. Front Biosci, 2007. 12: p. 3273-86.

19. Chu, K., et al., Cadherin-11 promotes the metastasis of prostate cancer cells to bone. Mol Cancer Res, 2008. 6(8): p. 1259-67.

20. Kawaguchi, J., et al., Targeted disruption of cadherin-11 leads to a reduction in bone density in calvaria and long bone metaphyses. J Bone Miner Res, 2001.

16(7): p. 1265-71.

21. Tamura, D., et al., Cadherin-11-mediated interactions with bone marrow

38

stromal/osteoblastic cells support selective colonization of breast cancer cells in bone. Int J Oncol, 2008. 33(1): p. 17-24.

22. Ortiz, A. and S.H. Lin, Osteolytic and osteoblastic bone metastases: two extremes of the same spectrum? Recent Results Cancer Res, 2012. 192: p.

225-33.

23. Roudier, M.P., et al., Bone histology at autopsy and matched bone scintigraphy findings in patients with hormone refractory prostate cancer: the effect of

bisphosphonate therapy on bone scintigraphy results. Clin Exp Metastasis, 2003.

20(2): p. 171-80.

24. Frixen, U.H., et al., E-cadherin-mediated cell-cell adhesion prevents

invasiveness of human carcinoma cells. J Cell Biol, 1991. 113(1): p. 173-85.

25. Mariotti, A., et al., N-cadherin as a therapeutic target in cancer. Expert Opin Investig Drugs, 2007. 16(4): p. 451-65.

26. Syrigos, K.N. and A.J. Karayiannakis, Adhesion molecules as targets for the treatment of neoplastic diseases. Curr Pharm Des, 2006. 12(22): p. 2849-61.

27. Blaschuk, O.W., et al., Identification of a cadherin cell adhesion recognition sequence. Dev Biol, 1990. 139(1): p. 227-9.

28. Nose, A., K. Tsuji, and M. Takeichi, Localization of specificity determining sites in cadherin cell adhesion molecules. Cell, 1990. 61(1): p. 147-55.

29. Chappuis-Flament, S., et al., Multiple cadherin extracellular repeats mediate homophilic binding and adhesion. J Cell Biol, 2001. 154(1): p. 231-43.

30. Pittet, P., et al., Fibrogenic fibroblasts increase intercellular adhesion strength by reinforcing individual OB-cadherin bonds. J Cell Sci, 2008. 121(Pt 6): p.

877-86.

31. Zhu, B., et al., Functional analysis of the structural basis of homophilic

39

cadherin adhesion. Biophys J, 2003. 84(6): p. 4033-42.

32. Wu, T.T., et al., Establishing human prostate cancer cell xenografts in bone:

induction of osteoblastic reaction by prostate-specific antigen-producing tumors in athymic and SCID/bg mice using LNCaP and lineage-derived metastatic sublines. Int J Cancer, 1998. 77(6): p. 887-94.

33. Lira, C.B., et al., Expression of the extracellular domain of OB-cadherin as an Fc fusion protein using bicistronic retroviral expression vector. Protein Expr Purif, 2008. 61(2): p. 220-6.

34. Galfione, M., et al., Expression and purification of the angiogenesis inhibitor 16-kDa prolactin fragment from insect cells. Protein Expr Purif, 2003. 28(2): p.

252-8.

35. Partridge, N.C., et al., Morphological and biochemical characterization of four clonal osteogenic sarcoma cell lines of rat origin. Cancer Res, 1983. 43(9): p.

4308-14.

36. Majeska, R.J., B.C. Nair, and G.A. Rodan, Glucocorticoid regulation of alkaline phosphatase in the osteoblastic osteosarcoma cell line ROS 17/2.8.

Endocrinology, 1985. 116(1): p. 170-9.

37. Sudo, H., et al., In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol, 1983.

96(1): p. 191-8.

38. Rodan, S.B., et al., Characterization of a human osteosarcoma cell line (Saos-2) with osteoblastic properties. Cancer Res, 1987. 47(18): p. 4961-6.

39. Katagiri, T., et al., Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol, 1994.

127(6 Pt 1): p. 1755-66.

40

40. Finnemann, S., et al., Uncoupling of XB/U-cadherin-catenin complex formation from its function in cell-cell adhesion. J Biol Chem, 1997. 272(18): p. 11856-62.

41. Yap, A.S., C.M. Niessen, and B.M. Gumbiner, The juxtamembrane region of the cadherin cytoplasmic tail supports lateral clustering, adhesive strengthening, and interaction with p120ctn. J Cell Biol, 1998. 141(3): p. 779-89.

42. Nagafuchi, A. and M. Takeichi, Cell binding function of E-cadherin is regulated by the cytoplasmic domain. EMBO J, 1988. 7(12): p. 3679-84.

43. Nagafuchi, A. and M. Takeichi, Transmembrane control of cadherin-mediated cell adhesion: a 94 kDa protein functionally associated with a specific region of the cytoplasmic domain of E-cadherin. Cell Regul, 1989. 1(1): p. 37-44.

44. Kimura, Y., H. Matsunami, and M. Takeichi, Expression of cadherin-11 delineates boundaries, neuromeres, and nuclei in the developing mouse brain.

Dev Dyn, 1996. 206(4): p. 455-62.

45. Lee, D.M., et al., Cadherin-11 in synovial lining formation and pathology in arthritis. Science, 2007. 315(5814): p. 1006-10.

46. Pishvaian, M.J., et al., Cadherin-11 is expressed in invasive breast cancer cell lines. Cancer Res, 1999. 59(4): p. 947-52.

47. Shibata, T., et al., Simultaneous expression of cadherin-11 in signet-ring cell carcinoma and stromal cells of diffuse-type gastric cancer. Cancer Lett, 1996.

99(2): p. 147-53.

48. Klymkowsky, M.W. and P. Savagner, Epithelial-mesenchymal transition: a cancer researcher's conceptual friend and foe. Am J Pathol, 2009. 174(5): p.

1588-93.

49. Monahan, T.S., et al., A novel function for cadherin 11/osteoblast-cadherin in vascular smooth muscle cells: modulation of cell migration and proliferation. J

41

Vasc Surg, 2007. 45(3): p. 581-9.

50. Boscher, C. and R.M. Mege, Cadherin-11 interacts with the FGF receptor and induces neurite outgrowth through associated downstream signalling. Cell Signal, 2008. 20(6): p. 1061-72.

51. Kiener, H.P., et al., The cadherin-11 cytoplasmic juxtamembrane domain

promotes alpha-catenin turnover at adherens junctions and intercellular motility.

Mol Biol Cell, 2006. 17(5): p. 2366-76.

52. Nieman, M.T., et al., N-cadherin promotes motility in human breast cancer cells regardless of their E-cadherin expression. J Cell Biol, 1999. 147(3): p. 631-44.

53. Ozawa, M. and R. Kemler, Molecular organization of the uvomorulin-catenin complex. J Cell Biol, 1992. 116(4): p. 989-96.

54. Shibamoto, S., et al., Association of p120, a tyrosine kinase substrate, with E-cadherin/catenin complexes. J Cell Biol, 1995. 128(5): p. 949-57.

55. Vleminckx, K., et al., Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell, 1991. 66(1): p.

107-19.

56. Perl, A.K., et al., A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature, 1998. 392(6672): p. 190-3.

57. Baki, L., et al., Presenilin-1 binds cytoplasmic epithelial cadherin, inhibits cadherin/p120 association, and regulates stability and function of the

cadherin/catenin adhesion complex. Proc Natl Acad Sci U S A, 2001. 98(5): p.

2381-6.

58. Fujita, Y., et al., Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nat Cell Biol, 2002. 4(3): p. 222-31.

59. Pece, S. and J.S. Gutkind, E-cadherin and Hakai: signalling, remodeling or

42

destruction? Nat Cell Biol, 2002. 4(4): p. E72-4.

60. Takeichi, M., Cadherins: a molecular family important in selective cell-cell adhesion. Annu Rev Biochem, 1990. 59: p. 237-52.

61. Sivasankar, S., et al., Direct molecular force measurements of multiple adhesive interactions between cadherin ectodomains. Proc Natl Acad Sci U S A, 1999.

96(21): p. 11820-4.

62. Patel, S.D., et al., Type II cadherin ectodomain structures: implications for classical cadherin specificity. Cell, 2006. 124(6): p. 1255-68.

63. Chang, S.K., et al., Cadherin-11 regulates fibroblast inflammation. Proc Natl Acad Sci U S A, 2011. 108(20): p. 8402-7.

64. Shapiro, L., et al., Structural basis of cell-cell adhesion by cadherins. Nature, 1995. 374(6520): p. 327-37.

65. Boggon, T.J., et al., C-cadherin ectodomain structure and implications for cell adhesion mechanisms. Science, 2002. 296(5571): p. 1308-13.

66. Tamura, K., et al., Structure-function analysis of cell adhesion by neural (N-) cadherin. Neuron, 1998. 20(6): p. 1153-63.

67. Tsuiji, H., et al., Cadherin conformations associated with dimerization and adhesion. J Biol Chem, 2007. 282(17): p. 12871-82.

68. Shi, Q., et al., Allosteric cross talk between cadherin extracellular domains.

Biophys J, 2010. 99(1): p. 95-104.

69. Zhang, S., et al., Modulation of prostate cancer cell gene expression by cell-to-cell contact with bone marrow stromal cells or osteoblasts. Clin Exp Metastasis, 2009. 26(8): p. 993-1004.

70. Noss, E.H., et al., Modulation of matrix metalloproteinase production by

rheumatoid arthritis synovial fibroblasts after cadherin 11 engagement. Arthritis

43

Rheum, 2011. 63(12): p. 3768-78.

71. Yap, A.S., et al., Lateral clustering of the adhesive ectodomain: a fundamental determinant of cadherin function. Curr Biol, 1997. 7(5): p. 308-15.

72. Valencia, X., et al., Cadherin-11 provides specific cellular adhesion between fibroblast-like synoviocytes. J Exp Med, 2004. 200(12): p. 1673-9.

73. Schneider, D.J., et al., Cadherin-11 contributes to pulmonary fibrosis: potential role in TGF-beta production and epithelial to mesenchymal transition. FASEB J, 2012. 26(2): p. 503-12.

74. Burden, R.E., et al., Recent advances in the application of antibodies as therapeutics. Future Med Chem, 2012. 4(1): p. 73-86.

75. Cheng, S.L., et al., Human osteoblasts express a repertoire of cadherins, which are critical for BMP-2-induced osteogenic differentiation. J Bone Miner Res, 1998. 13(4): p. 633-44.

76. Hadeball, B., A. Borchers, and D. Wedlich, Xenopus cadherin-11 (Xcadherin-11) expression requires the Wg/Wnt signal. Mech Dev, 1998. 72(1-2): p. 101-13.

77. Borchers, A., R. David, and D. Wedlich, Xenopus cadherin-11 restrains cranial neural crest migration and influences neural crest specification. Development, 2001. 128(16): p. 3049-60.

78. Backer, S., et al., Trio controls the mature organization of neuronal clusters in the hindbrain. J Neurosci, 2007. 27(39): p. 10323-32.

79. Tanaka, H., et al., Monoclonal antibody targeting of N-cadherin inhibits prostate cancer growth, metastasis and castration resistance. Nat Med, 2010. 16(12): p.

1414-20.

80. Cooper, C.R., et al., Preferential adhesion of prostate cancer cells to bone is mediated by binding to bone marrow endothelial cells as compared to

44

extracellular matrix components in vitro. Clin Cancer Res, 2000. 6(12): p.

4839-47.

81. Hall, C.L., et al., Type I collagen receptor (alpha 2 beta 1) signaling promotes the growth of human prostate cancer cells within the bone. Cancer Res, 2006.

66(17): p. 8648-54.

82. Shiozawa, Y., et al., Annexin II/annexin II receptor axis regulates adhesion, migration, homing, and growth of prostate cancer. J Cell Biochem, 2008. 105(2):

p. 370-80.

45

圖 1. Cadherin-11 對於細胞擴展作用之影響

轉染表現cadherin-11 載體或控制載體的 L 細胞 及 C4-2B4 細胞,在 cad11-Fc 或 Fc 塗層培養板上的表現。

(A) 表現有 cadherin-11 的 L-cell/cad11 細胞在 cad11-Fc 塗層培養板上呈現明顯擴展 的片狀/絲狀偽足扁平型態,且隨著 cad11-Fc 濃度存在劑量正相關性。

(B) 表現有 cadherin-11 的 C4-2B4 前列腺癌細胞 (C4-2B4/cad11) 在 cad11-Fc 塗層 培養板上具有相同的片狀/絲狀偽足扁平型態表現。

(C) 在自身已表現有 cadherin-11 的 PC3-mm2 細胞,在 Cad11-Fc 塗層培養板上同 樣表現扁平、偽足狀細胞擴展,在Fc 的塗層培養板上,則皆維持細胞的原型 型狀。

46

圖 2. Cadherin-11 在各種成骨細胞株上的表現及對細胞吸附作用之影響

(A) 以西方墨點法並利用辨識 cadherin-11 細胞內區段的單殊抗體 5B2H5,檢視各 種成骨細胞株cadherin-11 的表達量,除了未分化的 C2C12 細胞,均有一定量 的表現。

(B) 以免疫細胞染色法檢視,利用 goat anti-cadherin-11 多株抗體 (R&D Systems) 及DAPI 染色 (藍色) ,Cadherin-11 (紅色) 表現於 MC3T3-E1 及 UMR106 細 胞間接合處。圖面標示Bar 代表 10 m 大小。

(C) MC3T3-E1 及 UMR 細胞株在細胞吸附實驗,可吸附於 cadherin-11-Fc 預先處理 過的培養盤,但未能吸附於BSA 或 cadherin-12-Fc, 且其作用會因為加入 EDTA 而被抑制。

47

圖 3. Cadherin-11 促使前列腺癌細胞吸附於成骨細胞並改變細胞的形狀表現 (A) 在 C4-2B4/vector 與 MC3T3-E1 以 2:1 比例混合後,於細胞培養皿中,

C4-2B4/vector 細胞與 MC3T3-E1 細胞各自吸附至培養皿上,且 C4-2B4/vector 細胞多數維持圓形形狀。

(B) 在 C4-2B4/cad-11 與 MC3T3-E1 以 2:1 比例混合後,C4-2B4/cad-11 多數吸附於 MC3T3-E1 細胞上,且呈現扁平形狀。

48

圖 4. Cadherin-11 介導前列腺癌細胞與成骨細胞間的吸附作用

(A) 以 GFP 螢光標記的 C4-2B4 前列腺癌細胞培養於長滿 MC3T3-E1 成骨細胞培 養皿,C4-2B4/cad11 細胞呈現擴展的偽足形狀,並嵌入 MC3T3-E1 細胞層中。

C4-2B4/vector 則呈現圓形形狀於 MC3T3-E1 細胞層上。

(B) 以共軛顯微鏡 Z 軸不同階層取得影像,在 a 層較小細胞核的 C4-2B4/cad11 呈 現偽足形狀,並藉由抗人類cadherin-11 單株抗體 4B6 染色,可觀察到

C4-2B4/cad11 嵌入 MC3T3-E1 細胞層(b 和 c 層,呈現較大且有小點的細胞核) 中。

49

圖 5. Cadherin-11 促使前列腺癌細胞嵌入成骨細胞層

(A) 在 C4-2B4/cad-11 與 MC3T3-E1 共同培養實驗,於共軛顯微鏡下由上而下漸層 觀察。

(B) C4-2B4/cad-11(紅色免疫染色) 嵌入 MC3T3-E1 細胞層,且呈現扁平偽足形狀。

(C) C4-2B4/vector 與 MC3T3-E1 共同培養,並無任何被染色訊息。

50

圖 6. Cadherin-11 對於細胞移行 (migration) 及侵襲 (invasion)作用之影響 (A) C4-2B4/cadherin-11 與 C4-2B4/vector 的細胞移行作用。左上角的圖為移行至

insert 另一側細胞之照片,右上角為量化的資料。左下角則為 PC3-mm2-shcad11 及PC3-mm2-shcontrol 以西方墨點 (Western blot) 法確認是否表現有

cadherin-11,並以 actin 作為檢測量之對照。右下角圖面則為 PC3-mm2-shcad11 及PC3-mm2-shcontrol 移行作用的量化資料。

(B) C4-2B4/cad11 相較於 C4-2B4/vector cells 及 PC3-mm2/shcontrol 相較於 PC3-mm2/shcad11 的細胞侵襲作用量化資料 。

圖面Bar 代表 10 m。資料為 3 組取平均值± SD。 *, P<0.05.

51

圖 7. Cadherin-11 對於前列腺癌細胞的增殖、存活、

docetaxel 治療敏感性,以及非附著依賴性生長 的影響

(A) Cadherin-11 的表現,不影響 C4-2B4 細胞在培養皿 或MC3T3-E1 細胞層上的生長。

(B) (C)在 serum starvation 與 docetaxel 的存活測試,

cadherin-11 的表現,不影響 C4-2B4 細胞的生長。

(D) Cadherin-11 的表現,不影響 C4-2B4 細胞非附著依 賴性生長。

52

圖 8.表現完整 cadherin-11 及其突變序列之 C4-2B4 細胞鑑別分析

(A) Cadherin-11 mutant 簡要圖示。E1-E5: extracellular cadherin repeats 1-5.

TM: transmembrane domain. JMD: juxtamembrane cytoplasmic domain.

CBS: -catenin-binding sequence.

(B) 以免疫沉澱法及西方墨點法分析 C4-2B4/vector, C4-2B4/cad11, C4-2B4/JMD, C4-2B4/CBS 之 cadherin-11 及 p120-catenin 或 -catenin 的表現。

C4-2B4/JMD, C4-2B4/CBS 有較小的分子量。以抗體免疫沉澱法分析,

C4-2B4/cad11 同時結合了 p120-catenin 及-catenin 。C4-2B4/JMD 及 C4-2B4/CBS 則分別失去了 p120-catenin 及 -catenin 的結合能力

(C) 以 anti-human cadherin-11 4B6 單株抗體進行免疫染色及 FACS 分析,確認各細 胞表面均正常表現cadherin-11。

53

圖 9. Cadherin-11 細胞內區域對細胞擴展 (spreading) 作用之影響

(A) C4-2B4/cad11, C4-2B4/JMD 及 C4-2B4/CBS 在覆蓋有 cadherin-11-Fc 培養 板上均有良好的細胞擴展作用。

(B) 將 C4-2B4 細胞培養在長滿 MC3T3-E1 成骨細胞培養皿上,C4-2B4/cad11, C4-2B4/JMD 及 C4-2B4/CBS 均呈現細胞擴展及偽足狀外型,C4-2B4/vector 則仍呈現圓形形狀。

C4-2B4/cad11, C4-2B4/JMD 及 C4-2B4/CBS 有相同的 cadherin-11 細胞外區 域表現,其細胞擴展及與成骨細胞間的互動也有一致的呈現。

54

圖 10. Cadherin-11 細胞內區域對細胞移行 (migration) 及侵襲 (invasion) 作用之 影響

(A) 以 Fc 或 cad11-Fc coating 的 Falcon HTS FluoroBlok Inserts,檢測 C4-2B4/vector, C4-2B4/cad11, C4-2B4/JMD 及 C4-2B4/CBS 細胞的移行作用,

C4-2B4/JMD 及 C4-2B4/CBS 之作用明顯不如 C4-2B4/cad11,左側為顯微 鏡下螢光染色照片,右側為量化資料。

(B) 以 Biocoat Matrigel invasion chambers 檢測 C4-2B4/vector, C4-2B4/cad11, C4-2B4/JMD 及 C4-2B4/CBS 細胞的侵襲作用,C4-2B4/JMD 及

C4-2B4/CBS 之作用明顯不如 C4-2B4/cad11,且與 C4-2B4/vector 相似,左 側為顯微鏡下DAPI 染色照片,右側為量化資料。 (照片中 Bar 代表 10 m)

A

B

55

圖 11. Cadherin-11 的表現對 C4-2B4 細胞侵襲 (invasion) 作用相關基因表現之影 響

以Ilumina 基因分析平台進行 C4-2B4/vector, C4-2B4/cad11, C4-2B4/JMD 及 C4-2B4/CBS 細胞的基因微陣列分析,紅色代表基因表現量增加,綠色代表基因 表現量下降。

56

圖 12. Cadherin-11 的表現對 C4-2B4 細胞移行 (migration) 作用相關基因表現之影 響

以Ilumina 基因分析平台進行 C4-2B4/vector, C4-2B4/cad11, C4-2B4/JMD 及 C4-2B4/CBS 細胞的基因微陣列分析,紅色代表基因表現量增加,綠色代表基因 表現量下降。

57

圖 13.Cadherin-11 及其多株抗體對細胞聚集 (aggregation) 作用之影響

(A) Cadherin-11 介導的細胞黏附作用促使 L-cad11 細胞隨著時間發生細胞聚集作 用,故可觀察到單細胞數目逐漸減少,但L-vector 細胞則無明顯之細胞聚集作 用。

(B) Anti-cadherin-11 多株抗體 (20 g/mL)可抑制 L-cad11 細胞之聚集作用。

(C) Anti-cadherin-11 多株抗體抑制 L-cad11 細胞之聚集作用具有劑量相關性。

*, P<0.05.

58

圖 14. Anti-cadherin-11 單株抗體對於細胞聚集作用之影響

將L-cad11 細胞懸浮於含 10% FBS 的 DMEM 細胞培養液,加入 20 g/mL 單株抗體,持續以搖臂式混合1 小時,並計數單一細胞比例。1A5 及 2C7 單株抗體有較明顯之細胞聚集抑制作用,並達約80%。

相關文件