• 沒有找到結果。

About, I., M. J. Bottero, P. de Denato, J. Camps, J. C. Franquin, and T. A. Mitsiadis. 2000.

Human dentin production in vitro. Exp Cell Res 258 (1):33-41.

Almushayt, A., K. Narayanan, A. E. Zaki, and A. George. 2006. Dentin matrix protein 1 induces cytodifferentiation of dental pulp stem cells into odontoblasts. Gene Ther 13 (7):611-620.

Andreasen, J. O., H. U. Paulsen, Z. Yu, T. Bayer, and O. Schwartz. 1990. A long-term study of 370 autotransplanted premolars. Part II. Tooth survival and pulp healing subsequent to transplantation. Eur J Orthod 12 (1):14-24.

Arthur, A., G. Rychkov, S. Shi, S. A. Koblar, and S. Gronthos. 2008. Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells 26 (7):1787-1795.

Broxmeyer, H. E., E. F. Srour, G. Hangoc, S. Cooper, S. A. Anderson, and D. M. Bodine.

2003. High-efficiency recovery of functional hematopoietic progenitor and stem cells from human cord blood cryopreserved for 15 years. Proc Natl Acad Sci U S A 100 (2):645-650.

Burbridge, L., B. O. Cole, R. S. Hobson, and R. R. Welbury. 2005. Auto-transplantation in the restorative management of traumatized anterior teeth: a case report. Dent Update 32 (9):529-530, 532-524.

Chang, J., C. Zhang, N. Tani-Ishii, S. Shi, and C. Y. Wang. 2005. NF-kappaB activation in human dental pulp stem cells by TNF and LPS. J Dent Res 84 (11):994-998.

Coburn, R. J., B. L. Henriques, and L. E. Francis. 1966. The development of an experimental tooth bank using deep freeze and tissue culture techniques. J Oral Ther Pharmacol 2 (6):445-450.

Cordeiro, M. M., Z. Dong, T. Kaneko, Z. Zhang, M. Miyazawa, S. Shi, A. J. Smith, and J. E.

Nor. 2008. Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J Endod 34 (8):962-969.

Couble, M. L., J. C. Farges, F. Bleicher, B. Perrat-Mabillon, M. Boudeulle, and H. Magloire.

2000. Odontoblast differentiation of human dental pulp cells in explant cultures.

Calcif Tissue Int 66 (2):129-138.

Donovan, P. J., and J. Gearhart. 2001. The end of the beginning for pluripotent stem cells.

Nature 414 (6859):92-97.

Fraser, J. K., R. E. Schreiber, P. A. Zuk, and M. H. Hedrick. 2004. Adult stem cell therapy for the heart. Int J Biochem Cell Biol 36 (4):658-666.

Frederik, P. M., and W. M. Busing. 1981. Ice crystal damage in frozen thin sections:

freezing effects and their restoration. J Microsc 121 (Pt 2):191-199.

Gandia, C., A. Arminan, J. M. Garcia-Verdugo, E. Lledo, A. Ruiz, M. D. Minana, J.

Sanchez-Torrijos, R. Paya, V. Mirabet, F. Carbonell-Uberos, M. Llop, J. A. Montero, and P. Sepulveda. 2008. Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction. Stem Cells 26 (3):638-645.

Gronthos, S., J. Brahim, W. Li, L. W. Fisher, N. Cherman, A. Boyde, P. DenBesten, P. G.

Robey, and S. Shi. 2002. Stem cell properties of human dental pulp stem cells. J Dent Res 81 (8):531-535.

Gronthos, S., M. Mankani, J. Brahim, P. G. Robey, and S. Shi. 2000. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97 (25):13625-13630.

Huang, A. H., Y. K. Chen, L. M. Lin, T. Y. Shieh, and A. W. Chan. 2008a. Isolation and characterization of dental pulp stem cells from a supernumerary tooth. J Oral Pathol Med 37 (9):571-574.

Huang, A. H., B. R. Snyder, P. H. Cheng, and A. W. Chan. 2008b. Putative dental pulp-derived stem/stromal cells promote proliferation and differentiation of endogenous neural cells in the hippocampus of mice. Stem Cells 26 (10):2654-2663.

Ikeda, E., K. Yagi, M. Kojima, T. Yagyuu, A. Ohshima, S. Sobajima, M. Tadokoro, Y.

Katsube, K. Isoda, M. Kondoh, M. Kawase, M. J. Go, H. Adachi, Y. Yokota, T.

Kirita, and H. Ohgushi. 2008. Multipotent cells from the human third molar:

feasibility of cell-based therapy for liver disease. Differentiation 76 (5):495-505.

Iohara, K., M. Nakashima, M. Ito, M. Ishikawa, A. Nakasima, and A. Akamine. 2004.

Dentin regeneration by dental pulp stem cell therapy with recombinant human bone morphogenetic protein 2. J Dent Res 83 (8):590-595.

Iohara, K., L. Zheng, M. Ito, A. Tomokiyo, K. Matsushita, and M. Nakashima. 2006. Side population cells isolated from porcine dental pulp tissue with self-renewal and multipotency for dentinogenesis, chondrogenesis, adipogenesis, and neurogenesis.

Stem Cells 24 (11):2493-2503.

Iohara, K., L. Zheng, H. Wake, M. Ito, J. Nabekura, H. Wakita, H. Nakamura, T. Into, K.

Matsushita, and M. Nakashima. 2008. A novel stem cell source for vasculogenesis in ischemia: subfraction of side population cells from dental pulp. Stem Cells 26 (9):2408-2418.

Jonsson, T., and T. J. Sigurdsson. 2004. Autotransplantation of premolars to premolar sites.

A long-term follow-up study of 40 consecutive patients. Am J Orthod Dentofacial Orthop 125 (6):668-675.

Kaku, M., H. Kamata, T. Kawata, M. Tai, S. Kohno, M. Motokawa, Y. Tohma, T. Fujita, J.

Ohtani, N. Tsuka, T. Ohwada, and K. Tanne. 2007. Cryopreservation of PDL Cells by Use of Program Freezer with Magnetic Field for Teeth Banking. Dentistry in Japan 43:82-86.

Kawasaki, N., Y. Hamamoto, T. Nakajima, K. Irie, and H. Ozawa. 2004. Periodontal regeneration of transplanted rat molars after cryopreservation. Arch Oral Biol 49 (1):59-69.

Kawazoe, Y., S. Katoh, Y. Onodera, T. Kohgo, M. Shindoh, and T. Shiba. 2008. Activation of the FGF signaling pathway and subsequent induction of mesenchymal stem cell differentiation by inorganic polyphosphate. Int J Biol Sci 4 (1):37-47.

Kristerson, L., L. A. Johansson, J. Kisch, and L. E. Stadler. 1991. Autotransplantation of third molars as treatment in advanced periodontal disease. J Clin Periodontol 18 (7):521-528.

Lass, A., F. Akagbosu, and P. Brinsden. 2001. Sperm banking and assisted reproduction treatment for couples following cancer treatment of the male partner. Hum Reprod Update 7 (4):370-377.

Laureys, W., H. Beele, R. Cornelissen, and L. Dermaut. 2001. Revascularization after cryopreservation and autotransplantation of immature and mature apicoectomized teeth. Am J Orthod Dentofacial Orthop 119 (4):346-352.

Lee, S. J., I. Y. Jung, C. Y. Lee, S. Y. Choi, and K. Y. Kum. 2001. Clinical application of computer-aided rapid prototyping for tooth transplantation. Dent Traumatol 17

(3):114-119.

Leibo, S. P., and P. Mazur. 1971. The role of cooling rates in low-temperature preservation.

Cryobiology 8 (5):447-452.

Lovell-Badge, R. 2001. The future for stem cell research. Nature 414 (6859):88-91.

Mazur, P. 1984. Freezing of living cells: mechanisms and implications. Am J Physiol 247 (3 Pt 1):C125-142.

Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65 (1-2):55-63.

Oh, Y. H., Z. M. Che, J. C. Hong, E. J. Lee, S. J. Lee, and J. Kim. 2005. Cryopreservation of human teeth for future organization of a tooth bank--a preliminary study.

Cryobiology 51 (3):322-329.

Ohazama, A., S. A. Modino, I. Miletich, and P. T. Sharpe. 2004. Stem-cell-based tissue engineering of murine teeth. J Dent Res 83 (7):518-522.

Otaki, S., S. Ueshima, K. Shiraishi, K. Sugiyama, S. Hamada, M. Yorimoto, and O. Matsuo.

2007. Mesenchymal progenitor cells in adult human dental pulp and their ability to form bone when transplanted into immunocompromised mice. Cell Biol Int 31 (10):1191-1197.

Price, P. J., and M. Cserepfalvi. 1972. Pulp viability and the homotransplantation of frozen teeth. J Dent Res 51 (1):39-43.

Robinson, P. P. 1983. An electrophysiological study of the reinnervation of reimplanted and autotransplanted teeth in the cat. Arch Oral Biol 28 (12):1139-1147.

Rota, A., M. Martini, C. Milani, and S. Romagnoli. 2005. Evaluation of dog semen quality after slow (biological freezer) or rapid (nitrogen vapours) freezing. Reprod Nutr Dev 45 (1):29-37.

Schwartz, O., and J. O. Andreasen. 1983. Cryopreservation of mature teeth before replantation in monkeys (I). Effect of different cryoprotective agents and freezing devices. Int J Oral Surg 12 (6):425-436.

Schwartz, O., J. O. Andreasen, and T. Greve. 1985. Cryopreservation before replantation of mature teeth in monkeys. (II). Effect of preincubation, different freezing and equilibration rates and endodontic treatment upon periodontal healing. Int J Oral

Surg 14 (4):350-361.

Segers, V. F., and R. T. Lee. 2008. Stem-cell therapy for cardiac disease. Nature 451 (7181):937-942.

Seo, B. M., M. Miura, W. Sonoyama, C. Coppe, R. Stanyon, and S. Shi. 2005. Recovery of stem cells from cryopreserved periodontal ligament. J Dent Res 84 (10):907-912.

Servili, A., M. R. Bufalino, R. Nishikawa, I. S. de Melo, J. A. Munoz-Cueto, and L. E. Lee.

2008. Establishment of long term cultures of neural stem cells from adult sea bass, Dicentrarchus labrax. Comp Biochem Physiol A Mol Integr Physiol.

Shi, S., P. M. Bartold, M. Miura, B. M. Seo, P. G. Robey, and S. Gronthos. 2005. The efficacy of mesenchymal stem cells to regenerate and repair dental structures.

Orthod Craniofac Res 8 (3):191-199.

Shimono, M., T. Ishikawa, H. Ishikawa, H. Matsuzaki, S. Hashimoto, T. Muramatsu, K.

Shima, K. Matsuzaka, and T. Inoue. 2003. Regulatory mechanisms of periodontal regeneration. Microsc Res Tech 60 (5):491-502.

Temmerman, L., G. A. De Pauw, H. Beele, and L. R. Dermaut. 2006. Tooth transplantation and cryopreservation: state of the art. Am J Orthod Dentofacial Orthop 129 (5):691-695.

Temmerman, L., L. R. Dermaut, M. De Mil, G. Van Maele, H. Beele, and G. A. De Pauw.

2008. Influence of cryopreservation on human periodontal ligament cells in vitro.

Cell Tissue Bank 9 (1):11-18.

Tsutsui, K., M. Kaku, M. Motokawa, Y. Tohma, T. Kawata, T. Fujita, S. Kohno, J. Ohtani, K. Tenjoh, M. Nakano, H. Kamada, and K. Tanne. 2007. Influences of reduced masticatory sensory input from soft-diet feeding upon spatial memory/learning ability in mice. Biomed Res 28 (1):1-7.

Tziafas, D., A. J. Smith, and H. Lesot. 2000. Designing new treatment strategies in vital pulp therapy. J Dent 28 (2):77-92.

Yin, L. X., K. F. Pan, L. Wang, J. L. Wang, J. D. Yang, P. Y. Ge, and P. Wang. 2001. [The experimental study of the delayed replantation after cryopreservation of mature tooth in dogs]. Shanghai Kou Qiang Yi Xue 10 (2):128-131.

附錄

圖一:本實驗所用樣本為同一患者左右對稱之小臼齒或智齒,其中一顆作為 牙齒銀行程式降溫冷凍組,另一顆直接培養牙髓幹細胞作為未冷凍組。

圖二:本實驗所採用之程式降溫儀,由日本 ABI 株式會社所生產,可在降溫 過程中加入微弱磁場(Cell Alive System, CAS),為日本廣島大學牙齒 銀行專利授權予台北醫學大學使用。

Collagenase type I: 4 mg/ml Dispase: 2 mg/ml

圖三:本實驗採用組織塊酶解法培養牙髓幹細胞,首先將牙齒以中藥材研磨 缽敲碎牙齒後取出牙髓組織,再將牙髓組織切碎成泥狀,切碎的組織以 0.5 ml type I collagenase(4 mg/ml)與 0.5 ml dispase II(2 mg/ml)之 1 ml 混合溶 液進行酵素酶解作用,培養出初代(第一代)牙髓幹細胞。

受冷凍影響

未受冷凍影響之定義:在無污染之情形下,在6cm dish培養30天後細胞數大於6x104/ml 6x104/ml:正向控制組中,在6cm dish培養30天後細胞數最少者

0%

980217 4x 培養31天後

980226 4x 培養40天後

圖五:以組織塊酶解法培養冷凍前牙齒之牙髓幹細胞,可見大約三十天到四 十天後可達到 6 公分培養皿之九分滿。

980304 4x 培養34天後 980226 4x

培養28天後

圖六:以組織塊酶解法培養程式降溫冷凍後牙齒之牙髓幹細胞,可見大約三 十天到四十天後未能達到 6 公分培養皿之九分滿,相較於未冷凍的牙 齒,生長能力稍弱。

0 0.1 0.2 0.3 0.4 0.5 0.6

0 1 2 3 4 5

Days

C ell v iab ility ( O D )

未經冷凍 磁性冷凍

圖七:以 MTT 法分析冷凍前後牙髓幹細胞生長曲線(第五到十代牙髓幹細

胞),兩者並無統計上之顯著差異(t-test, p>0.05)。

Day0 Day1 Day2

Day3 Day4 Day5

圖八:未冷凍牙齒所培養牙髓幹細胞繼代後一週之生長情形,可觀察到細胞 形成匯流。

Day0 Day1 Day2

Day3 Day4 Day5

圖九:磁性冷凍後牙齒所培養牙髓幹細胞繼代後一週之生長情形,細胞同樣 可形成匯流。

未冷凍 凍結齒

圖十:冷凍前後牙齒所培養牙髓幹細胞之電子顯微鏡影像,視野中可看見大 小不一,形態不規則的細胞,或是長突觸的類神經細胞狀細胞。

未冷凍

圖十一:未冷凍牙齒所培養牙髓幹細胞之電子顯微鏡影像,可見長突觸之類 神經細胞狀細胞。

凍結齒

圖十二:磁性冷凍後牙齒所培養牙髓幹細胞之電子顯微鏡影像,亦可見長突 觸之類神經細胞狀細胞。

CRMP-2 Phase contrast

Control

NGF 50

圖十三:經由神經細胞 marker CRMP-2 的染色確認,此長突觸之細胞並無神 經細胞 marker CRMP-2 的呈色反應,且在 neuron growth factor (NGF) 的環境之下,亦無神經細胞 marker CRMP-2 的表現。

GAP-43 NGF

圖十四:經由神經細胞 marker GAP-43 的染色確認,此長突觸之細胞並無神 經細胞 marker GAP-43 的呈色反應,且在 neuron growth factor (NGF) 的環境之下,亦無神經細胞 marker GAP-43 的表現。

CD34(-)

未冷凍

凍結齒

圖十五:冷凍前後牙齒所培養牙髓幹細胞經由免疫螢光染色法測定 CD34 (綠 色)表面特徵蛋白之雷射共軛焦顯微鏡影像,CD34 抗原之表現相當微 弱,幾不可見(-)。

CD44(++)

未冷凍

凍結齒

圖十六:冷凍前後牙齒所培養牙髓幹細胞經由免疫螢光染色法測定 CD44 (綠 色)表面特徵蛋白之雷射共軛焦顯微鏡影像,CD44 抗原之表現相當強 烈,可輕易辨識(++)。

圖十七:未經冷凍之牙齒所培養牙髓幹細胞經由免疫螢光染色法測定STRO-1 (綠色)表面特徵蛋白之雷射共軛焦顯微鏡影像,STRO-1 抗原之表現較 具變異性,應視為部分表現(+/-)。

圖十八:經磁性冷凍之牙齒所培養牙髓幹細胞經由免疫螢光染色法測定 STRO-1 (綠色)表面特徵蛋白之雷射共軛焦顯微鏡影像,STRO-1 抗原之 表現與未經冷凍未冷凍組類似,具有變異性,亦可視為部分表現(+/-)。

未冷凍 凍結齒

CD44

& STRO-1 CD44

& STRO-1

圖十九:冷凍前後牙齒所培養牙髓幹細胞經由免疫螢光染色法測定 CD44 (紅 色) 與 STRO-1 (綠色)兩種表面特徵蛋白之雷射共軛焦顯微鏡影像,結 果 顯 示 冷 凍 前 後 牙 齒 所 培 養 之 牙 髓 幹 細 胞 均 能 有 CD44( 紅 色 ) 與 STRO-1 (綠色)的表現。

圖二十:未冷凍組牙齒所培養牙髓幹細胞經由特殊培養基促進脂肪化後以 oil red O 染色法確認脂肪滴的存在,可推知其具有脂肪化的能力。

圖二十一:磁性冷凍後牙齒所培養牙髓幹細胞經由特殊培養基促進脂肪化後 以 oil red O 染色法確認脂肪滴的存在,可推知其亦具有脂肪化的能力。

圖二十二:脂肪化控制組未加入促進脂肪化之特殊培養基,同樣培養四週後 以 oil red O 進行脂肪細胞的染色確認,結果顯示未冷凍的牙齒所培養的 牙髓幹細胞脂肪化控制組並無脂肪細胞的呈色反應。

圖二十三:脂肪化控制組未加入促進脂肪化之特殊培養基,同樣培養四週後 以 oil red O 進行脂肪細胞的染色確認,結果顯示程式降溫冷凍後解凍的 牙齒所培養的牙髓幹細胞在脂肪化控制組並無脂肪細胞的呈色反應。

冷凍組control 未冷凍control

冷凍組骨化 未冷凍骨化

圖二十四:未冷凍或磁性冷凍牙齒所培養牙髓幹細胞經由骨化培養基促進骨 化反應後,以 alizarin red S 染色法確認鈣沉積的存在,其旺盛的骨化能 力以肉眼即可輕易辨別。

圖二十五:未冷凍牙齒所培養牙髓幹細胞經由特殊培養基促進骨化後以 alizarin red S 染色法確認鈣沉積的存在,可推知其具有骨化的能力。

圖二十六:磁性冷凍後牙齒所培養牙髓幹細胞經由特殊培養基促進骨化後以 alizarin red S 染色法確認鈣沉積的存在,可推知其亦具有骨化的能力。

圖二十七:骨化控制組未加入促進骨化之特殊培養基,同樣培養三週後以 alizarin red S 進行鈣沉積的染色確認,結果顯示未冷凍組牙齒中牙髓幹 細胞之骨化控制組內,無鈣沉積的呈色反應。

圖二十八:骨化控制組未加入促進骨化之特殊培養基,同樣培養三週後以 alizarin red S 進行鈣沉積的染色確認,結果顯示程式降溫冷凍組牙齒中 牙髓幹細胞之骨化控制組內,無鈣沉積的呈色反應。

相關文件