• 沒有找到結果。

這篇論文實驗所量測的VCO電路是使用Colpitts電路型態,在模擬與量測 Colpitts電路都可以發現Colpitts電路確實可以提供VCO電路所需的負阻抗。實際在 量測 2 層與 4 層PCB的Colpitts電路時,在相同的回授電容之電容值下,不論模擬 或是實際量測下,4 層PCB之Colpitts電路的 S11 相位為-180°所對應的頻率都比 2 層PCB之Colpitts電路要來的高,所以在實際的VCO電路使用的是 4 層PCB。在VCO 電路中實際使用的可變電容有兩種,一種是飛利浦(Philips)廠商所提供型號為 BB135 之P-N接面電容,另外一個就是Al/HfO2/Si浮接電容(Floating Capacitor)。

在VCO電路所搭配這兩種不同的可變電容,所使用的VCO電路元件以及佈局

(Layout)是一樣的,搭配這兩種不同的可變電容之VCO電路,量測出來的結果 除了Al/HfO2/Si可變電容在VCO電路中輸出的頻率是無法調變外,其餘的輸出功 率、耗電流以及相位雜訊的量測上,都與另一個VCO電路中可變電容型號為BB135 之P-N接面電容所量測的數據是差不多。雖然在這篇論文所使用的Al/HfO2/Si浮接 電容做為VCO電路中的可變電容,振盪頻率在 200MHz以上並沒有發揮其電容調變 效果,Al/HfO2/Si浮接電容在高頻下無法發揮其電壓調變電容效果,這可用網路分 析儀所量到的S參數可看出其端倪。因為這篇論文所使用的Al/HfO2/Si浮接電容之 可變電容並無在高頻下調變電壓改變其電容值,推敲有幾種原因:

一、這次使用的可變電容型式是浮接電容,旁邊並不像MOS 電容般有電荷能 快速供給,以至在高頻下並無電壓調變電容之效果。

二、這次製做HfO2介電層的製程是參考一般常用的製程,可能其製程上並沒 掌控的很好,以至於在高頻下並無電壓調變電容之效果。

因 為 本 論 文 實 驗 的Al/HfO2/Si電容在 100 KHz以上之頻率,是無法使用

Keithley-590 型號的儀器來量測電容值,所以使用網路分析儀來量測其S參數並做 一分析,希望下次能使用其他方法來驗證此電容在高頻下是否能經由電壓的調變 來改變Al/HfO2/Si電容的電容值。

未來有機會的話,將會做以下幾件事:

一、可將MOS中的閘極(Gate)所使用的氧化矽(SiO2)用HfO2來取代,因 為旁邊有電荷可快速填補,應該有機會在高頻下仍保有電容隨電壓的調變 性,將會使用MOS電容的結構方式,如Fig. 5-1。

HfO2

P-Substrate

n+

上電極

Al Al Al Al

p+

Al

下電極 下電極

n+ p+

Fig. 5-1 使用 HfO2 介電材料來做為 MOS 電容結構的示意圖

二、將製作HfO2過程中做一改變,即是使用直流濺鍍機(DC Sputter)將Hf 的靶材用在真空度為10-6 托爾(Torr)的真空腔中鍍在矽(Silicon)上,

接著用800~1000 ℃中迴火(anneal)。

三、做一個MIM電容,介質使用的是BaSrTiO3(Barium Strontium Titanate, BST),因為BST做為介質是可以藉由電壓控制來達到不同的介電常數,進 而改變其電容值,其MIM電容結構如Fig. 5-2。

Fig. 5-2 使用 BST 介電材料來做為 MIM 電容結構的示意圖

REFERENCES

[1] K. Chang, I. Bahl, and V. Nair, RF/Microwave circuit design for wireless application, New York: Wiley, 2002.

[2] C. P. Yue, VCO Design Overview postor, CMU, 2002.

[3] R. J. Weber, Introduction to microwave circuits: radio frequency and design applications, New York: IEEE Press, 2001.

[4] K. Chang, I. Bahl, and V. Nair, RF and microwave circuit and component design for wireless systems, New York: Wiley, 2002.

[5] V. D. George, P. Anthony M, Rohde, and L. Ulrich, Microwave circuit design using linear and nonlinear techniques, New York: John Wiley & Sons, 1990.

[6] 蘇煜仁, 射頻壓控震盪器使用多重靜電驅動電極之微機械式可變電容, 交通 大學碩士論文, 民國 92 年.

[7] I. Bahl and P. Bhartia, Microwave solid state circuit design, second edition, New York: Wiley, 2003.

[8] M. Odyniec, RF and microwave oscillator design, Boston: Artech House, 2002.

[9] H. Shin, Z. Xu, and M. F. Chang, A 1.8-V 6/9-GHz switchable dual-band quadrature LC VCO in SiGe BiCMOS technology, IEEE Radio Fre- quency Integrated Circuits Symposium 2-4, June 2002, pp.71 – 74.

[10] C. Y. Wu and C. Y. Yu, A 0.8V 5.9GHz wide tuning range CMOS VCO using inversion-mode bandswitching varactors, IEEE Radio Frequency Integrated Circuits Symposium Vol. 5, May 2005, pp.5079 – 5082.

[11] M. Tiebout, Low-power low-phase-noise differentially tuned quadrature VCO Design in standard CMOS, IEEE J. Solid-State Circuits, Vol. 36, July 2001, pp.1018– 1024.

[12] D. Leenaerts, C. Dijkmans, and M. Thompson, A 0.18 μm CMOS 2.45 GHz, low-power quadrature VCO with 15% tuning range, IEEE Radio Frequency Integrated Circuits Symposium, June 2002, pp.67 – 70.

[13] J. Bhattacharjee, D. Mukherjee, E. Gebara, S. Nuttinck, and J. Laskar, A 5.8 GHz full integrated low-power low-phase-noise LC VCO for wireless application, IEEE Radio Frequency Integrated Circuits Symposium, June 2003, pp.295 – 298.

[14] A. D. Berny, A. M. Niknejad, and R.G. Meyer, A wideband low-phase noise CMOS VCO, IEEE Custom Integrated Circuits Conf., Sept. 2003, pp.555 – 558.

[15] K. Kwok and H.C. Luong, Ultra-low-voltage high performance CMOS VCOs use transformer feedback, IEEE J. Solid-State Circuits, Vol. 40, Mar 2005, pp.652 – 660.

[16] D. Ham and Hajimiri A, Concepts and methods in optimization of ntegrated LC VCOs, IEEE J. Solid-State Circuits, Vol. 36, June 2001, pp.896 – 909.

[17] P. Andreani and S. Mattisson, On the use of MOS varactors in RF VCO’s, IEEE J. Solid-State Circuits, June 2000, pp.905 –910.

[18] F. Svelto, P. Erratico, S. Manzini, and R. Castello, A metal oxide semi- conductor Varactor, IEEE Electron Device Letters, April 1999, pp.164 –166.

[19] K. Kano, Semiconductor devices, Upper Saddle River, N.J. Prentice Hall, 1998, pp.369 –378.

[20] M. V. Fischetti, D. Neumayer, E. Cartier, Reduction of the Electrion Mobility in High-k MOS systems caused by Remote Scattering with Interfacial Optical Phonons, IBM, March, 2003

[21] D. M. Pozar. Microwave engineering, second edition, New York: Wiley, 1998.

[22] S. Levantino, C. Samori, A. Bonfanti, S. L. J. Gierkink, A. L. Lacaita, and V.

Boccuzzi, Frequency dependence on bias current in 5 GHz CMOS VCOs:

impact on tuning range and flicker noise upconversion, IEEE J. Sold-State Cirsuits, Vol. 37, August 2002.

[23] T. H. Lee and A. Hajimiri, Oscillator phase noise: a tutorial, IEEE J.

Solid-State Circuits, Vol. 35, March 2000, pp.326 –336

[24] Harale, I. Jacobsson, I. B. Mingquan, I. L. Aspemyr, M. Abdelkarim and C.

Geert, Low phase noise sub-I V supply 12 and 18 GHz VCOs in 90 nm CMOS, IEEE MTT-S International Microwave Symposium Digest, June 2006, pp.573 –576.

[25] Neric H. W. Fong, J. O. Plouchart, N. Zamdmer, D. Liu, Lawrence F.

Wagner, C. Plett, and N. G. Tarr, Design of wide-band CMOS VCO for multiband wireless LAN applications, IEEE Journal of Solid-State Circuit, Vol. 38,pp. 1333-1342, Aug. 2003.

[26] C. Samori, S. Levantino, and V. Boccuzzi, A-94dBc/Hz@100kHz, fully-integrityd, 5 GHz, CMOS VCO with 18% tuning range for Bluetooth application, in Proc. IEEE Custom Integrated Circuits Conf., pp.201- 204, 2001.

[27] B. Jung and R. Harjani, A Wide Tuning Range VCO using Capacitive Source Degeneration, In proc. ISCAS’ 04, pp. 145-148.

[28] F. Svelto, S. Deantoni, and R. Castello, A 1mA, -120.5 dBc/Hz at 600kHz from 1.9GHz fully tunable LC CMOS VCO, in Proc. IEEE Custom Integrated Circuit Conf., pp. 577-580, 2000

[29] T. P. Liu, A 6.5GHz Monolithic CMOS Voltage-Controlled Oscillator, in IEEE Int. Solid-State Circuit Conf. Dig. Tech Papers, pp. 404-405, Feb.

1999

[30] C. Y. Wu , A 0.8 V 5.9 GHz wide tuning range CMOS VCO using inversion mode band switching varactors, IEEE international symposium Vol. 5, May 2005, pp. 5079-5082.