• 沒有找到結果。

Chapter 4 Effects of SiN Capping on NBTI of PMOSFETs

5.1 Conclusions

Using poly-SiGe as gate material to fabricate PMOSFETs has numerous

advantages, including reduced gate depletion effect and improved gate sheet resistance.

Compressive PECVD SiN layer could significantly enhance the drive current of PMOS devices at either room or raised operating temperatures (125 °C) due to increase of hole

mobility, as shown in our experiment. The degrees of mobility enhancement are

enlarged as devices geometry is scaled down. Despite this merit, our results also

indicate that the SiN capping may aggravate the NBTI characteristics. A high amount of

hydrogen species contained in the PE-SiN layer as well as the strain energy stored in the

channel may be the culprits for the worsened reliability. The interface trap density

change and threshold voltage shift recover significantly during passivation periods.

We’ve also observed that the strained channel device is influenced strongly by AC stress

frequency.

32

References

[1] K. Mistry, M. Armstrong, C. Auth, S. Cea, T. Coan, T. Ghani, T. Hoffmann, A.

Murthy, J. Sandford, R. Shaheed, K. Zawadzki, K. Zhang, S. Thompson and M.

Bohr, “Delaying Forever: Uniaxial Strained Silicon Transistors in a 90nm CMOS Technology”, VLSI Symp. Tech. Dig., pp.50, 2004.

[2] R. Khamankar, H. Bu, C. Bowen, S. Chakravarthi, P.R. Chidambaram, M. Bevan, A. Krishnan, H. Niimi, B. Smith, J. Blatchford, B. Hornung, J.P. Lu, P. Nicollian, B. Kirkpatrick, D. Miles, M. Hewson, D. Farber, L. Hall, H. AlShareef, A.

Varghese, A. Gurba, V. Ukraintsev, B. Rathsack, J. DeLoach, J. Tran, C.

Kaneshige, M. Somervell, S. Aur, C. Machala and T. Grider, “An Enhanced 90nm High Performance Technology with Strong Performance Improvements from Stress and Mobility Increase through Simple Process Changes”, VLSI Symp. Tech.

Dig., pp.162, 2004.

[3] J. L. Hoyt, H. M. Nayfeh, S. Eguchi, I. Aberg, G. Xia, T. Drake, E. A. Fitzgerald, and D. A. Antoniadis, “Strained silicon MOSFET technology”, IEDM Tech. Dig., pp.23-26, December 2002.

[4] B. H. Lee, A. Mocuta, S. Bedell, H. Chen, D. Sadana, K. Rim, P. O'Neil, R. Mo, K.

Chan, C. Cabral, C. Lavoie, D. Mocuta, A. Chakravarti, R. M. Mitchell, J.

Mezzapelle, F. Jamin, M. Sendelbach, H. Kermel, M. Gribelyuk, A. Domenicucci, K. A. Jenkins, S. Narasimha, S. H. Ku, M. Ieong, I. Y. Yang, E. Leobandung, P.

Agnello, W. Haensch, and J. Welser, “Performance enhancement on sub-70nm strained silicon SOI MOSFETs on ultra-thin thermally mixed strained silicon/SiGe on insulator (TM-SGOI) substrate with raised S/D”, IEDM Tech. Dig., pp.946-948, December 2002.

33

[5] C. Ge, C. Lin, C. Ko, C. Huang, Y. Huang, B. Chan, B. Perng, C. Sheu, P. Tsai, L.

Yao, C. Wu, T. Lee, C. Chen, C. Wang, S. Lin, Y. Yeo, and C. Hu,

“Process-strained Si (PSS) CMOS technology featuring 3D strain engineering”, IEDM Tech. Dig., pp.73-76, December 2003.

[6] T. Ghani, M. Armstrong, C. Auth, M. Bost, P. Charvat, G. Glass, T. Hoffmann, K.

Johnson, C. Kenyon, J. Klaus, B. McIntyre, K. Mistry, A. Murthy, J. Sandford, M.

Silberstein, S. Sivakumar, P. Smith, K. Zawadzki, S. Thompson, and M. Bohr, “A 90nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors”, IEDM Tech. Dig., pp.978-980, December 2003.

[7] C. S. Smith, Phys. Rev., Vol. 94, pp.42-49, 1954.

[8] F. Ootsuka, S. Wakahara, K. Ichinose, A. Honzawa, S. Wada, H. Sato, T. Ando, H.

Ohta, K. Watanabe, and T. Onai, “A highly dense, high-performance 130nm node CMOS technology for large scale system-on-a-chip applications”, IEDM Tech.

Dig., pp.575-578, December 2000.

[9] S. Ito, H. Namba, K. Yamaguchi, T. Hirata, K. Ando, S. Koyama, S. Kuroki, N.

Ikezawa, T. Suzuki, T. Saitoh, and T. Horiuchi, “Mechanical stress effect of etch-stop Nitride and its impact on deep submicron transistor design”, IEDM Tech.

Dig., pp.247-250, December 2000.

[10] G. Timp, A. Agarwal, F. H. Baumann, T. Boone, M. Buonanno, R. Cirelli, V.

Donnelly, M. Foad, D. Grant, M. Green, H. Gossmann, S. Hillenius, J. Jackson, D.

Jacobson, R. Kleiman, A. Kornblit, F. Klemens, J. T. Lee, W. Mansfield, S.

Moccio, A. Murrell, M. O'Malley, J. Rosamilia, J. Sapjeta, and P. Silverman, “Low leakage, ultra-thin gate oxides for extremely high performance sub-100nm nMOSFETs”, IEDM Tech. Dig., pp.930-932, December 1997.

[11] B. Maiti, P. J. Tobin, V. Misra, R. I. Hegde, K. G. Reid, and C. Gelatos, “High

34

performance 20Å NO oxynitride for gate dielectric in deep sub-quarter micron CMOS technology”, IEDM Tech. Dig., pp.651-654, December 1997.

[12] T. Aoyama, K. Suzuki, H. Tashiro, Y. Tada, and H. Arimoto, “Flat-band voltage shifts in P-MOS devices caused by carrier activation in P+-polycrystalline silicon and boron penetration”, IEDM Tech. Dig., pp.627-630, December 1997.

[13] H. P. Tuinhout, A. H. Montree, J. Schmitz, and P. A. Stolk, “Effects of gate depletion and boron penetration on matching of deep submicron CMOS transistors”, IEDM Tech. Dig., pp.631-634, December 1997.

[14] T. King, J. R. Pfiester, and K. C. Saraswat, “A variable-work-function polycrystalline-Si1-xGex gate material for submicrometer CMOS technologies”, IEEE Electron Device Lett., Vol. 12, pp. 533 - 535, October 1991.

[15] D. A. Antoniadis and J. E. Chung, “Physics and technology of ultra short channel MOSFET devices”, IEDM Tech. Dig., pp.21-24, December 1991.

[16] T. King, J. R. Pfiester, J. D. Shott, J. P. McVittie, and K. C. Saraswat, “A polycrystalline-Si1-xGex-gate CMOS technology”, IEDM Tech. Dig., pp.253-256, December 1990.

[17] V. Z. Li, M. R. Mirabedini, R. T. Kuehn, J. J. Wortman, and M. C. Öztürk, “Single gate 0.15µm CMOS devices fabricated using RTCVD in-situ boron doped Si1-xGex gates”, IEDM Tech. Dig., pp.833-836, December 1997.

[18] C. Salm, D. T. van Veen, D. J. Gravesteijn, J. Holleman,and P. H. Woerlee,

“Diffusion and Electrical Properties of Boron and Arsenic Doped Poly-Si and Poly-GexSi1–x (x ~ 0.3) as Gate Material for Sub-0.25 µm Complementary Metal Oxide Semiconductor Applications”, J. Electrochem. Soc., vol.144, pp.3665–3673, 1997.

[19] T. King, J. P. McVittie, K. C. Saraswat, and J. R. Pfiester, “Electrical properties of heavily doped polycrystalline silicon-germanium films”, IEEE Trans. Electron

35 Devices, Vol. 41, pp.228-232, February 1994.

[20] P. Hellberg, S. Zhang, and C. S. Petersson, “Work function of boron-doped polycrystalline SixGe1-x films”, IEEE Electron Device Lett., Vol. 18, pp.456-458, September 1997.

[21] P. Heremans, R. Bellens, G. Groeseneken, and H. E. Maes, “Consistent model for the hot-carrier degradation in n-channel and p-channel MOSFET's”, IEEE Trans.

Electron Devices, Vol. 35, pp.2194-2209, December 1988.

[22] H. S. Momose, M. Ono, T. Yoshitomi, T. Ohguro, S. Nakamura, M. Saito, and H.

Iwai, “1.5 nm direct-tunneling gate Oxide Si MOSFET's”, IEEE Trans. Electron Devices, Vol. 43, pp.1233-1242, August 1996.

[23] Shin-ichi Takagi and Mariko Takayanagi, “Experimental Evidence of Inversion-Layer Mobility Lowering in Ultrathin Gate Oxide Metal-Oxide-Semiconductor Field-Effect-Transistors with Direct Tunneling Current”, Jpn. J. Appl. Phys. Vol. 41, pp.2348-2352, 2002

[24] Taizoh Sadoh, Fitrianto, Atsushi Kenjo, Akihiro Miyauchi, Hironori Inoue and Masanobu Miyao, “Mechanism of Improved Thermal Stability of B in Poly-SiGe Gate on SiON”, Jpn. J. Appl. Phys. Vol. 41, pp.2468, 2002

[25] S. Takagi, T. Mizuno, T. Tezuka, N. Sugiyama, T. Numata, K. Usuda, Y.

Moriyama, S. Nakaharai, J. Koga, A. Tanabe, N. Hirashita, and T. Maeda,

“Channel structure design, fabrication and carrier transport properties of strained-Si/SiGe-on-insulator (strained-SOI) MOSFETs”, IEDM Tech. Dig., pp.

57-60, December 2003.

[26] K. Rim, K. Chan, L. Shi, D. Boyd, J. Ott, N. Klymko, F. Cardone, L. Tai, S.

Koester, M. Cobb, D. Canaperi, B. To, E. Duch, I. Babich, R. Carruthers, P.

Saunders, G. Walker, Y. Zhang, M. Steen, and M. Ieong, “Fabrication and mobility characteristics of ultra-thin strained Si directly on insulator (SSDOI) MOSFETs”,

36 IEDM Tech. Dig., pp.47-52, December 2003.

[27] T. Mizuno, N. Sugiyama, T. Tezuka, T. Numata, T. Maeda, and S. Takagi, “Design for scaled thin film strained-SOI CMOS devices with higher carrier mobility”, IEDM Tech. Dig., pp.31-34, December 2002.

[28] I. Åberg, O.O. Olubuyide, C. Ní Chléirigh, I. Lauer, D.A. Antoniadis, J. Li, R. Hull and J.L. Hoyt, “Electron and Hole Mobility Enhancements in Sub-10 nm-thick Strained Silicon Directly on Insulator Fabricated by a Bond and Etch-back Technique”, VLSI Symp. Tech. Dig., pp.52, 2004.

[29] S. E. Thompson, M. Armstrong, C. Auth, S. Cea, R. Chau, G. Glass, T. Hoffman, J.

Klaus, Z. Ma, B. Mcintyre, A. Murthy, B. Obradovic, L. Shifren, S. Sivakumar, S.

Tyagi, T. Ghani, K. Mistry, M. Bohr, and Y. El-Mansy, “A logic nanotechnology featuring strained-silicon”, IEEE Electron Device Lett., Vol. 25, pp.191-193, April 2004.

[30] W. Zhao, J. He, R. E. Belford, L. Wernersson, and A. Seabaugh, “Partially depleted SOI MOSFETs under uniaxial tensile strain”, IEEE Trans. Electron Devices, Vol. 51, pp.317-323, March 2004.

[31] A. Shimizu, K. Hachimine, N. Ohki, H. Ohta, M. Koguchi, Y. Nonaka, H. Sato, and F. Ootsuka, “Local mechanical-stress control (LMC): A new technique for CMOS-performance enhancement”, IEDM Tech. Dig., pp. 433 - 436, December 2001.

[32] G. Scott, J. Lutze, M. Rubin, F. Nouri, and M. Manley, “NMOS Drive current reduction caused by transistor layout and trench isolation induced stress”, IEDM Tech. Dig., pp.827-830, December 1999.

[33] T. Matsumoto, S. Maeda, H. Dang, T. Uchida, K. Ota, Y. Hirano, H. Sayama, T.

Iwamatsu, T. Ipposhi, H. Oda, S. Maegawa, Y. Inoue, and T. Nishimura, “Novel SOI wafer engineering using low stress and high mobility CMOSFET with

37

<100>-channel for embedded RF/Analog applications,” IEDM Tech. Dig., pp.663-666, December 2002.

[34] A. Steegen, M. Stucchi, A. Lauwers, and K. Maex, “Silicide induced pattern density and orientation dependent transconductance in MOS transistors”, IEDM Tech. Dig., pp.497-500, December 1999.

[35] S. Maikap, M. H. Liao, F. Yuan, M. H. Lee, C. Huang, S. T. Chang, and C. W.

Liu, ”Package-strain-enhanced device and circuit performance”, IEDM Tech. Dig., pp.233-236, December 2004.

[36] B. M. Haugerud, L. A. Bosworth, and R. E. Belford, “Mechanically induced strain enhancement of metal--oxide--semiconductor field effect transistors”, J. Appl.

phys., Vol.94, pp.4102-4107, 2003

[37] K. Rim, J. Chu, H. Chen, K.A. Jenkins, T. Kanarsky, K. Lee, A. Mocuta, H. Zhu, R. Roy, J. Newbury, J. Ott, K. Petrarca, P. Mooney, D. Lacey, S. Koester, K. Chan, D. Boyd, M. Ieong, and H.-S. Wong, “Characteristics and Device Design of Sub-100 nm Strained Si N- and PMOSFETs”, VLSI Symp. Tech. Dig., pp.98-99, 2002

[38] M.D.Giles, M.Armstrong, C.Auth, S.M.Cea, T.Ghani, T.Hoffmann, R.Kotlyar, P.Matagne, K.Mistry, R.Nagisetty, B.Obradovic, R.Shaheed, L.Shifren, M.Stettler, S.Tyagi, X.Wang, C.Weber, K.Zawadzki, “Understanding Stress Enhanced Performance in Intel 90nm CMOS Technology”, VLSI Symp. Tech. Dig., pp.118-119, 2004

[39] C. W. Leitz, M. T. Currie, M. L. Lee, Z.-Y. Cheng, D. A. Antoniadis and E. A.

Fitzgerald, “Hole mobility enhancements and alloy scattering-limited mobility in tensile strained Si/SiGe surface channel metal–oxide–semiconductor field-effect transistors”, J. Appl. phys., Vol.92, pp.3745-3751, 2002

[40] M. V. Fischetti, Z. Ren , P. M. Solomon, M. Yang, and K. Rim, “Six-band k·p

38

calculation of the hole mobility in silicon inversion layers: Dependence on surface orientation, strain, and silicon thickness”, J. Appl. phys., Vol.94, pp.1079-1095, 2003

[41] S. E. Thompson, G. Sun, K. Wu, J. Kim, and T. Nishida, “Key differences for process-induced uniaxial vs. substrate-induced biaxial stressed Si and Ge channel MOSFETs”, IEDM Tech. Dig., pp.221-224, December 2004.

[42] J. Goo, Q. Xiang, Y. Takamura, F. Arasnia, E. N. Paton, P. Besser, J. Pan, and M.

Lin, “Band offset induced threshold variation in strained-Si nMOSFETs”, IEEE Electron Device Lett., Vol. 24, pp.568-570, September 2003.

[43] Chenming Hu, “DEVICE CHALLENGES AND OPPORTUNITIES”, VLSI Symp.

Tech. Dig., pp.4-5, 2004

[44] K. Rim, S. Koester, M. Hargrove, J. Chu, P. M. Mooney, J. Ott, T. Kanarsky, P.

Ronsheim, M. Ieong, A. Grill, H.-S. P. Wong, “Strained Si NMOSFETs for High Performance CMOS Technology”, VLSI Symp. Tech. Dig., pp.59-60, 2001

[45] N. Kimizuka, T. Yamamoto, T. Mogami, K. Yamaguchi, K. Imai, and T. Horiuchi,

“The impact of bias temperature instability for direct-tunneling ultra-thin gate oxide on MOSFET scaling”, VLSI Symp. Tech. Dig., pp.73-74, 1999

[46] Shigeo Ogawa, Masakazu Shimaya, and Noboru Shiono, “Interface trape generation at ultrathin SiO2(4-6nm) interfaces during negative-bias temperature aging”, J. Appl. Phys., Vol.77, pp.1137-1148, 1995.

[47] C Svensson, “The Physics of SiO2 and its Interface”, edited by S. T. Pantelides (Pergamon, New York, 1978) p.328

[48] Dieter K. Schroder and Jeff A. Babcock, “Negative bias temperature instability:

Road to cross in deep submicron silicon semiconductor manufacturing”, J. Appl.

Phys., Vol.94, pp.1-18, 2003.

[49] Kjell O. Jeppson and Christer M. Svensson, “Negative bias stress of MOS devices

39

at high electric fields and degradation of MNOS devices”, J. Appl. Phys., Vol.48, p.2004, 1997.

[50] M. Alam, B. Weir and P. Silverman, “The prospect of using thin oxides for silicon nanotransistors”, in proc., Int. Workshop on Gate Insulator, p.10, 2001

[51] S. Mahapatra, M. A. Alam, P. B. Kumar, T. R. Dalei, and D. Saha, “Mechanism of negative bias temperature instability in CMOS devices: Degradation, recovery and impact of nitrogen”, IEDM Tech. Dig., pp.105-108, December 2004.

[52] G. Chen, K. Y. Chuah, M. F. Li, Daniel SH Chan, C. H. Ang, J. Z. Zheng, Y. Jin and D. L. Kwong, “Dynamic NBTI of PMOS transistors and its impact on device lifetime”, Reliability Physics Symposium Proceedings 2003, pp.196-202

[53] Y. Mitani, “Influence of nitrogen in ultra-thin SiON on negative bias temperature instability under AC stress”, IEDM Tech. Dig., pp.117-120, December 2004.

40

Control

sample

SiN 100nm sample

SiN 300nm sample

Passivation Layer

(Capping Layer) TEOS 300nm SiN 100nm + TEOS 300nm

SiN 300nm + TEOS 300nm

Table 2.1 Split table of capping layer structure and thickness

Passivation Voltage B/A

0V 0.29 Control

+1V 0.32 0V 0.27 SiN 100nm

+1V 0.29 0V 0.29 SiN 300nm

+1V 0.33

Table 4.1 B/A ratio of devices with different capping layers, at different passivation voltages during DNBTI stress

41

Fig. 2.1 Schematic cross section of the local strained channel PMOSFET

Fig. 2.2 TEM micrographs of device with channel length 0.55 µm

SiN

Source Drain

TEOS

Gate

42

Fig. 2.3 Configuration for (a) gate-to-substrate, (b) gate-to-channel capacitance measurements

Fig. 2.4 Bias configuration of NBTI stressing

n-substrate

p+ p+

p+

Gate

n-substrate

p+ p+

p+

Gate

G G

B B S/D

S/D

(a) (b)

n-substrate p+

Source

p+

Drain p+

Gate VG<0

43

Fig. 2.5 Measurement setup in our charge pumping experiment Switch

HP 4156

GPIB n-substrate

p+

Source

p+

Drain p+

Gate

h+ e

-HP 81110A Pulse Generator

44

CMOS Performance Impact Direction of

Strain Change* NMOS PMOS

X Improve Degrade

Y Improve Improve

Z Degrade Improve

* Strain change = Increased tensile or decreased compressive strain

Fig. 3.1 Schematic illustration for 3D process-induced strain components [43].

Drain

Gate

Ex Ey Ez

Source

Gate Silicide

Process-induced Strain

45 (a)

(b)

(c)

Fig. 3.2 (a) Splitting of 6-fold degenerate conduction band in unstrained and biaxial tensile strained Si inversion layers [44]. (b) Schematic diagram of the valence bands in unstrained and strained Si layers [40]. (c) Splitting of light hole band and heavy hole band with biaxial and uniaxial strains in low electric field (solid line) and high electric field (dash line) [41].

6 4

Low Field High Field Low Field High Field Unstrain Strain

Biaxial Strain Uniaxial Strain

46

Fig. 3.3 Cumulative probability distribution of sheet resistance of poly-Si and poly-SiGe films. Both with thickness of 150nm, implanted with B implant (dose 3e15cm-2, 8KeV) and anneal at 900°C 30sec.

Sheet Resistance (Ω/sq)

100 200 300 400 500 600

Cumulative Probability (%)

10 30 50 70 90

Poly-Si Gate

Poly-SiGe Gate

47

Fig. 3.4 Output characteristics of devices with poly-Si and poly-SiGe gates at 25°C and VG -Vth= 0 ~ -2 V, step= -0.4 V, W/L= 10µm/1µm.

Drain Voltage (V)

-2.0 -1.5

-1.0 -0.5

0.0

Drain Current ( µA/ µm)

-160 -140 -120 -100 -80 -60 -40 -20 0

Poly-SiGe Gate

Poly-Si Gate

48

Fig. 3.5 Capacitance of devices with poly-Si and poly-SiGe gates. (W/L= 50µm/50µm)

Gate Voltage (V)

-2 -1 0 1 2

Capacitance ( µF/cm

2

)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Poly-Si Gate Poly-SiGe Gate

49

Fig. 3.6 Comparison of hole mobility among different gate materials measured by split-CV method.

Effective Field (MV/cm)

0.0 0.2 0.4 0.6 0.8 1.0

Mobility (cm

2

/Vs)

0 50 100 150 200 250

Poly-Si gate

Poly-SiGe gate

Universial mobility

50 (a)

(b)

Fig. 3.7 Output characteristics of different capping layers at (a) 25°C (b) 125°C and VG-Vth= 0 ~ -2 V, step= -0.4 V, W/L=10 µm/0.55µm.

Drain Current ( µA/ µm)

-160

51 (a)

(b)

Fig. 3.8 Subthreshold characteristics of devices with different capping layers at (a)25°C (b)125°C and VD= -0.05 V, -2 V, W/L= 10µm/0.55µm.

52 (a)

(b)

Fig. 3.9 Transconductance for devices with different capping layers at (a)25°C (b)125°C and VD= -0.05 V, W/L= 10µm/0.55µm.

53

Fig. 3.10 Measured CV profile for devices with different capping layers at 25°C, W/L= 50µm/50µm.

Voltage (V)

-2 -1 0 1 2

Capacitance ( µF/cm

2

)

0.0 0.2 0.4 0.6 0.8 1.0

Control

SiN 100nm

SiN 300nm

54 (a)

(b)

Fig. 3.11 Saturation current (VD= -2V, VG -Vth= -2V) enhancement of different SiN thickness as a function of channel length at (a) 25°C (b) 125°C

Channel Length (µm)

55 (a)

(b)

Fig. 3.12 Subthreshold swing of devices with different capping layers as a function of channel length at (a) 25°C, and (b) 125°C.

Channel Length (µm)

56 (a)

(b)

Fig. 3.13 Threshold voltage of devices with different capping layers as a function of channel length at (a) 25°C, and (b) 125°C.

Channel Length (µm)

57

Fig. 3.14 Changes of threshold voltage for devices with different capping layers as a function of channel length at 25°C.

Channel Length (µm)

0 1 2 3 4 5

Vth (V)

0.04 0.06 0.08 0.10 0.12 0.14

SiN 100nm

SiN 300nm

58

Fig. 3.15 Charge pumping current of devices with different capping layers at 25°C, W/L= 10µm/1µm, pulse amplitude= 1.5V, frequency= 1 MHz.

Peak Voltage (V)

0.0 0.5 1.0 1.5 2.0

Charge Pumping Current (nA)

-0.8

-0.6

-0.4

-0.2

0.0

Control

SiN 100nm

SiN 300nm

59

Fig. 4.1 Schematic view of the field-induced hydrogen species current through the gate oxide during negative bias aging.

Fig. 4.2 Various phases of Nit buildup. 1: reaction-limited, 2: quasi-equilibrium, 3:

diffusion-limited, 4: enhancement due to poly absorption, 5: saturation due to poly reflection, 6: final saturation [51].

VG

60 (a)

(b)

Fig. 4.3 (a) Threshold voltage shift, and (b) Transconductance degradation at 25°C during VGO = –3.9 V stress aging (W/L= 10µm/0.55µm).

61 (c)

(d)

Fig. 4.3 (c) Interface trap density increasing, and (d) Oxide trap density increase at 25°C during VGO = –3.9V stress aging (W/L= 10µm/0.55µm).

62 (a)

(b)

Fig. 4.4 (a) Threshold voltage shift, and (b) Transconductance degradation at 125°C during VGO = –3.9V stress aging (W/L= 10µm/0.55µm).

63 (c)

(d)

Fig. 4.4 (c) Interface trap density increase, and (d)oxide trap density increase at 125°C during VGO = –3.9V stress aging (W/L= 10µm/0.55µm).

64 (a)

(b)

Fig. 4.5 (a) Threshold voltage shift, and (b) Interface trap density increase of the control sample at 25°C with different VG stresses (W/L= 10µm/0.55µm).

Stress Time (s)

65 (a)

(b)

Fig. 4.6 (a) Threshold voltage shift, and (b) Interface trap density increase of the device with SiN-capping 100nm sample at 25°C with different VG stresses.

(W/L= 10µm/0.55µm)

66 (a)

(b)

Fig. 4.7 (a) Threshold voltage shift, and (b) Interface trap density increase of the device with 300nm SiN-capping at 25°C with different VG stresses.

(W/L= 10µm/0.55µm)

67 (a)

(b)

Fig. 4.8 (a) Threshold voltage shift,and (b) Interface trap density increaseof the control sample at 125°C with different VG stresses. (W/L= 10µm/0.55µm)

Stress Time (s)

68 (a)

(b)

Fig. 4.9 (a) Threshold voltage shift, and (b) Interface trap density increase of the device with 100nm SiN-capping at 125°C with different VG stresses.

69 (a)

(b)

Fig. 4.10 (a) Threshold voltage shift, and (b) Interface trap density increase of the device with SiN-capping 300nm sample at 125°C with different VG stresses.

(W/L=10µm/0.55µm)

70

Fig. 4.11 Threshold voltage shift dependence on temperature with different capping layers, estimated by VGO = –3.9V, 1000s stress.

1/kT (eV

-1

)

28 30 32 34 36 38 40

-∆ V

th

(mV)

1 10 100 1000

Control SiN 100nm SiN 300nm slope=-0.19

slope=-0.195

slope=-0.13

71 (a)

(b)

Fig. 4.12 (a) Interface trap density, and (b) Oxide trap density change dependence on temperature with different capping layers, estimated by VGO = –3.9V, 1000s stress.

72 (a)

(b)

Fig. 4.13 (a) Threshold voltage shift, and (b) Interface trap density change of the control sample during VGO = –4V and different passivation stresses at 125°C. (W/L=

10µm/0.75µm)

Stress Time (s)

0 2000 4000 6000 8000 10000 12000

V

th

(mV)

0 2000 4000 6000 8000 10000 12000

N

it

(10

12

/cm

2

)

73 (a)

(b)

Fig. 4.14 (a) Threshold voltage shift, and (b) Interface trap density change of the device with 100nm SiN-capping 1ayer during VGO = –4V and different passivation stresses at 125°C. (W/L= 10µm/0.75µm)

Stress Time (s)

0 2000 4000 6000 8000 10000 12000

V th (mV)

0 2000 4000 6000 8000 10000 12000

N it (1012 /cm2 )

74 (a)

(b)

Fig. 4.15 (a) Threshold voltage shift, and (b) Interface trap density change of the device with 300nm SiN-capping layer during VGO = –4V and different passivation stresses at 125°C. (W/L= 10µm/0.75µm)

Stress Time (s)

0 2000 4000 6000 8000 10000 12000

V th (mV)

0 2000 4000 6000 8000 10000 12000

N it (1012 /cm2 )

75 (a)

(b)

Fig. 4.16 (a) Interface trap density change, and (b) Subthreshold swing shift dependence on threshold voltage shift of the control sample, during VGO= –4V and different passivation stresses at 125°C. (W/L= 10µm/0.75µm)

∆Vth (mV)

76 (a)

(b)

Fig. 4.17 (a) Interface trap density change, and (b) Subthreshold swing shift dependence on threshold voltage shift of the device with 100nm SiN-capping layer, during VGO= –4V and different passivation stresses at 125°C. (W/L= 10µm/0.75µm)

∆Vth (mV)

77 (a)

(b)

Fig. 4.18 (a) Interface trap density change, and (b) Subthreshold swing shift dependence on threshold voltage shift of the device with 300nm SiN-capping layer, during VGO= –4V and different passivation stresses at 125°C. (W/L= 10µm/0.75µm)

∆Vth (mV)

78 (a)

(b)

Fig. 4.19 (a) Threshold voltage shift, and (b) Interface trap density change of the control sample during different frequency AC stresses (VGO= -3.9V) at 125°C. (W/L=

10µm/0.65µm)

79 (a)

(b)

Fig. 4.20 (a) Threshold voltage shift, and (b) Interface trap density change of the device with 100nm SiN-capping layer, during different frequency AC stresses, VGO= -3.9V at 125°C. (W/L= 10µm/0.65µm)

Stress Time (s)

80 (a)

(b)

Fig. 4.21 (a) Threshold voltage shift, and (b) Interface trap density change of the device with 300nm SiN-capping layer, during different frequency AC stresses VGO= -3.9V at 125°C. (W/L= 10µm/0.65µm)

Stress Time (s)

81 (a)

(b)

Fig. 4.22 (a) Threshold voltage shift, and (b) Interface trap density change as a function of frequency for devices with different capping layers, after VGO = -3.9V 1000sec stress at 125°C. (W/L= 10µm/0.65µm).

Frequency (Hz)

82

簡 歷

姓名:張伊鋒 性別:男 生日:70.7.18 出生地:台北市 籍貫:台中縣

住址:台北縣土城市延峯街 12 巷 9 號

學歷:台北市立松山高中 1996.9~1999.6 國立中興大學 物理學系 1999.9~2003.6 國立交通大學 電子研究所固態組碩士班 2003.9~2005.6 論文題目:具有複晶矽鍺閘極與局部形變通道之 P 型金氧半場效電晶

體元件製作與分析

Fabrication and Characterization of PMOSFETs with Poly-SiGe gate and

Locally Strained Channel

相關文件