• 沒有找到結果。

CONCLUSIONS AND FUTURE WORKS

6.2 Future Works

The simulation and measurement results have shown that the current-mode front-end receiver can achieve good performance under low-voltage supply. The low power dissipation of the receiver offer interesting possibilities for higher performance. For example, suppose the topology of two antennas with two integrated current-mode receivers. Even without sophisticated antenna diversity and beam forming techniques, the baseband current signal of the two receivers can be added to improve the signal-to-noise ratio by 3 dB. Note that phase coherence at the two antennas (at 24 GHz) is not critical; only the baseband data streams must have a reasonable phase alignment. However, the DC biasing of the proposed receiver increase its complicity. Thus, it is required to design a DC biasing circuit such as constant-gm bias circuit. This can reduces the sensitivity of the proposed receiver for temperature and process variations and increase the performance of the receiver.

In the capacitive feedback matching network LNA, the difference between noise figure and minimum noise figure are slightly different and instinctive for operational frequency shift. Even FOM of the proposed LNA is excellent in comparison with other proposed LNAs, it still can be increased. To achieve higher FOM, the noise-power optimization techniques for conventional inductive degeneration common-source can be adopted.

In the implementation of self-switching current-mode mixer, to reduce the mismatch between the self-switching device due to the fabrication process, the current though the self-switching devices of the mixer can be adjusted by feedback signals measured from drain or source of the self-switching device. Furthermore, to efficiently combine the IF-branches of the mixer, a follow-up 2− GHz IF amplifier can be used. Future research will

be conducted to design a complete 60−GHz CMOS current-mode front-end receiver using the proposed mixer and LNA.

Figure 6.1: National Chiao Tung University on-waver probe analytical station test setup 2008.

Appendix A

As can be seen from Fig. 4.2, Ai can be represented by 4m+1 points, Thus, by using the Riemann sum [83] to approximate the integration in (4.1.4) when j = 1, (4.1.4) can be approximated as

In the above equations, Cp is the value of Ai, which corresponds to the LO current equal Isin(P π2m). Substituting (A.0.2) and (A.0.3) in (A.0.1), Ac1 can be rewritten as

For sine wave input LO, the above equation can be farther simplified as

Ac1 1

by rearranging the index of summation of the first partial sum

−1

Therefore, by substituting (A.0.7) in (A.0.6), the first harmonic conversion gain can ap-proximated as

Bibliography

[1] A.J. Richardson and P.A. Watson, “Use of the 55-65 GHz oxygen absorption band fort short-range broadband radio networks with minimal regulatory control,” in Proc.

Inst. Electr. Eng., Aug. 1990, pp. 233–241.

[2] P. Smulders, “Exploiting the 60 GHz band for local wireless multimedia access:

Prospects and future directions,” IEEE Commun. Mag., vol. 40, pp. 140–147, June 2002.

[3] S. Montusclat, F. Gianesello, and D. Gloria, “Silicon full integrated LNA, filter and antenna system beyond 40 GHz for MMW wireless communication links in advanced CMOS technologies,” in Proc. IEEE Radio Frequency Integrated Circuits Symp., June 2006, pp. 1 – 4.

[4] C.-C. Lin, S.-S. Hsu, C.-Y. Hsu, and H.-R Chuang, “A 60-GHz millimeter-wave CMOS RFIC-on-chip triangular monopole antenna for WPAN applications,” in Proc. IEEE Antennas and Propagation International Symposium Symp., June 2007, pp. 2522 – 2525.

[5] S. Alalusi and R. Brodersen, “A 60GHz phased array in CMOS,” in Proc. IEEE Custom Integrated Circuits, Sept. 2006, pp. 393 – 396.

[6] C.-L. Ko, C.-N. Kuo, and Y.-Z. Juang, “On-chip transmission line modeling and applications to millimeter-wave circuit design in 0.13μm CMOS Technology,” in Proc.

IEEE VLSI Design, Automation and Test Symp., April 2007, pp. 1 – 4.

[7] A. Natarajan, A. Komijani, and A. Hajimiri, “A 24 GHz phased-array transmitter in 0.18μm CMOS,” in Proc. IEEE Design Automation Conferenc, June 2005, pp. 551 – 552.

[8] X. Sun, O. Dupuis, D. Linten, G. Carchon, P. Soussan, S. Decoutere, W.D. Raedt, and E. Beyne, “High-Q above-IC inductors using thin-film wafer-level packaging tech-nology demonstrated on 90− nm RF-CMOS 5-GHz VCO and 24-GHz LNA,” IEEE Trans. Advanced Packaging, vol. 29, pp. 810 – 817, Nov. 2006.

[9] C. Cao, Y. Ding, X. Yang, J.-J. Lin, H.-T. Wu, A.K. Verma, J. Lin, and F. Martin, , “A 24-GHz transmitter with on-chip dipole antenna in 0.13− μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 43, pp. 1394 – 1402, June 2008.

[10] G. Felic and E. Skafidas, “An integrated transformer balun for 60 GHz silicon RF IC design,” in Proc. IEEE Signals, Systems and Electronics Symp., Aug. 2007, pp. 541 – 542.

[11] Lai, Ivan, Kambayashi, Yuki, Fujishima, and Minoru, “60-GHz CMOS down-conversion mixer with slow-wave matching transmission lines,” in Proc. IEEE In-ternational Asian Solid-State Circuits Conference, Nov. 2006, pp. 195 – 198.

[12] G. Ternent, S. Ferguson, Z. Borsofoldi, K. Elgaid, T. Lohdi, D. Edgar, D.C.W. Wilkin-son, and I.G.Thayne, “Coplanar waveguide transmission lines and high Q inductors on CMOS grade silicon using photoresist and polyimide,” IEEE Electronics Letters, vol. 43, pp. 1957 – 1958, Oct. 1999.

[13] N. Yasutake, K. Ohuchi, M. Fujiwara, K. Adachi, A. Hokazono, K. Kojima, N .Aoki, H. Suto, T. Watanabe, T. Morooka, H. Mizuno, S. Magoshi, T. Shimizu, S. Mori, H.

Oguma, T. Sasaki, M. Ohmura, K. Miyano, H. Yamada, H. Tomita, D. Matsushita, K. Muraoka, S. Inaba, M. Takayanagi, K. Ishimaru, and H. Ishiuchi, “A hp22 nm node low operating power (LOP) technology with sub-10 nm gate length planar bulk CMOS devices,” in Proc. IEEE VLSI Technology, June 2004, pp. 84 – 85.

[14] H.-C. Chen, T. Wang, and S.-S. Lu, “A 56 GHz 1-V CMOS direct-conversion receiver with an integrated quadrature coupler,” IEEE Journal of Solid-State Circuits, vol. 42, pp. 1963 – 1975, Sept. 2007.

[15] K. Lee, J. Park, J.-W. Lee, S.-W. Lee, H. K. Huh, D.-K. Jeong, and W. Kim, “A single-chip 2.4-GHz direct-conversion CMOS receiver for wireless local loop using multi-phase reduced frequency conversion technique,” IEEE Journal of Solid-State Circuits, vol. 36, pp. 800 – 809, May 2001.

[16] J. Rogin, I. Kouchev, G. Brenna, D. Tschopp, and Q. Huang, “A 1.5-V 45-mW direct-conversion WCDMA receiver IC in 0.13− μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 2239 – 2248, Dec. 2003.

[17] P. Sivonen, J. Tervaluoto, N. Mikkola, and A. Parssinen, “A 1.2-V RF front-end with on-chip VCO for PCS 1900 direct conversion receiver in 0.13− μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 41, pp. 384 – 394, Feb. 2006.

[18] J.-H.C. Zhan, B.R. Carlton, and S.S. Taylor, “A broadband low-cost direct-conversion receiver front-end in 90nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 43, pp.

1132 – 1137, May 2008.

[19] M. Brandolini, M. Sosio, and F. Svelto, “A 750 mV fully integrated direct conversion receiver front-end for GSM in 90− nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 42, pp. 1310 – 1317, June 2007.

[20] T.-K. Nguyen, V. Krizhanovskii, J. Lee, S.-K Han, S.-G. Lee, N.-S. Kim, and C.-S.

Pyo, “A low-power RF direct-conversion receiver/transmitter for 2.4-GHz-band IEEE 802.15.4 standard in 0.18 − μm CMOS technology,” IEEE Journal of Solid-State Circuits, vol. 54, pp. 4062 – 4071, Dec. 2006.

[21] M. Brandolini, P. Rossi, D. Sanzogni, and F. Svelto, “A +78 dBm IIP2 CMOS direct downconversion mixer for fully integrated UMTS receivers,” IEEE Journal of Solid-State Circuits, vol. 41, pp. 552 – 559, March 2006.

[22] B. Razavi, “Design considerations for direct-conversion receivers,” IEEE Trans. Cir-cuits and Syst. II, vol. 44, pp. 428 – 435, June 1997.

[23] ——, “A millimeter-wave CMOS heterodyne receiver with on-chip LO and divider,”

IEEE Journal of Solid-State Circuits, vol. 43, pp. 477 – 485, March 2008.

[24] A. Parsa and B. Razavi, “A 60GHz CMOS receiver using a 30GHz LO,” in Proc.

IEEE international Solid-State Circuits Conference (ISSCC ’08), Feb. 2008, pp. 400 – 606.

[25] B. Razavi, “A mm-wave CMOS heterodyne receiver with on-chip LO and divider,”

in Proc. IEEE International Solid-State Circuits Conference (ISSCC ’07), Feb. 2007, pp. 188 – 596.

[26] R.A. Baki and M.N El-Gamal, “RF CMOS fully-integrated heterodyne front-end re-ceivers design technique for 5 GHz applications,” in Proc. IEEE International Sym-posium on Circuits and Systems, May 2004, pp. I – 960–3 Vol.1.

[27] B. Razavi, “A 5.2-GHz CMOS receiver with 62-dB image rejection,” IEEE Journal of Solid-State Circuits, vol. 46, pp. 810 – 815, May 2001.

[28] J.C. Rudell, J.-J. Ou, R. S. Narayanaswami, G. Chien, J.A. Weldon, L. Lin, K.-C. Tsai, L. Tee, K. Khoo, D. Au, T. Robinson, D. Gerna, M. Otsuka, and P.R.

Gray, “Recent developments in high integration multi-standard CMOS transceivers for personal communication systems,” in Proc. IEEE International Symposium on Low Power Electronics and Design, Aug. 1998, pp. 149– 154.

[29] J. Maligeorgos and J. Long, “A 2 V 5.1-5.8 GHz image-reject receiver with wide dynamic range,” in Proc. IEEE International Solid-State Circuits Conference (ISSCC

’00), Feb. 2000, pp. 322–323.

[30] L. Der and B. Razavi, “A 2-GHz CMOS image-reject receiver with LMS calibration,”

IEEE Journal of Solid-State Circuits, vol. 38, pp. 167– 175, Feb. 2003.

[31] Y.H. Chen, H.-H. Hsieh, and L.-H. Lu, “A 24-GHz receiver frontend with an LO signal generator in 0.18−μm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 56, pp. 1043 – 1051, May 2008.

[32] R. Hartley, “Modulation system,” U.S Patent, pp. 1,666,206, April 1928.

[33] D.K. Weaver, “A Third method of generation and detection of single-sideband sig-nals,” in in Proc. IRE, vol. 44, Dec. 1956, pp. 1703–1705.

[34] R. Richter and H.-J. Jentschel, “An integrated wideband-IF-receiver architecture for mobile terminals,” in Proc. IEEE International Microwave Symp., Digest, June 2003, pp. A69 – A72 vol.1.

[35] J.C. Rudell, J.-J. Ou, T.B. Cho, G. Chien, F. Brianti, J.A. Weldon, and P.R Gray,

“A 1.9-GHz wide-band IF double conversion CMOS receiver for cordless telephone applications,” IEEE Journal of Solid-State Circuits, vol. 32, pp. 2071 – 2088, Dec.

1997.

[36] H. Jeong, B.-J. Yoo, C. Han, S.-Y. Lee, K.-Y. Lee, S. Kim, D.-K. Jeong, and W.

Kim, “A 0.25 − μm CMOS 1.9-GHz PHS RF transceiver with a 150-kHz Low-IF architecture,” IEEE Journal of Solid-State Circuits, vol. 42, pp. 1318 – 1327, June 2007.

[37] H. Rafati and B. Razavi, “A receiver architecture for dual-antenna systems,” IEEE Journal of Solid-State Circuits, vol. 42, pp. 1291 – 1299, June 2007.

[38] I. Nam, K. Choi, J. Lee, H.-K. Cha, B.-I. Seo, K. Kwon, and K. Lee, “A 2.4-GHz low-power low-IF receiver and direct-conversion transmitter in 0.18− μm CMOS for IEEE 802.15.4 WPAN applications,” IEEE Trans. Microw. Theory Tech., vol. 55, pp.

682 – 689, April 2007.

[39] C.-Y. Wu and C.-Y. Chou, “A 5-GHz CMOS double-quadrature receiver front-end with single-stage quadrature generator,” IEEE Journal of Solid-State Circuits, vol. 39, pp. 519 – 521, March 2004.

[40] C.-W. Kim and S.-G. Lee, “A 5.25-GHz image rejection RF front-End Receiver With Polyphase filters,” IEEE Journal of Solid-State Circuits, vol. 16, pp. 302 – 304, May 2006.

[41] J. Crols and M.S.J Steyaert, “A single-chip 900 MHz CMOS receiver front-end with a high performance low-IF topology,” IEEE Journal of Solid-State Circuits, vol. 30, pp. 1483 – 1492, Dec. 1995.

[42] C.H. Doan, S. Emami, A.M. Niknejad, and R.W. Brodersen, “Millimeter-wave CMOS design,” IEEE Journal of Solid-State Circuits, vol. 40, pp. 144 – 155, Jan. 2005.

[43] T.-P. Wang and H. Wang, “A broadband 42-63-GHz amplifier using 0.13 μm CMOS technology,” in Proc. IEEE International Microwave Symposium (ISSCC ’06), June 2007, pp. 1779 – 1782.

[44] B. Heydari, M. Bohsali, E. Adabi, and A.M. Niknejad, “Low-power mm-wave compo-nents up to 104GHz in 90nm CMOS,” in Proc. IEEE International Solid-State Circuits Conference (ISSCC ’07), Feb. 2007, pp. 1254 – 1263.

[45] M.A. Masud, H. Zirath, M. Ferndahl, and H. Vickes, “90 nm CMOS MMIC amplifier,”

in Proc. IEEE Radio Frequency Integrated Circuits Symp. Digest, June 2004, pp. 201 – 204.

[46] H. Yano, Y. Nakahara, T. Hirayama, Y. Suzuki, and A. Furukawa, “Performance of Ku-band on-chip matched Si monolithic amplifiers using 0.18 μm-gatelength MOS-FETs,” IEEE Transactions on Microwave Theory and Techniques, vol. 36, no. 6, pp.

956–969, June 2001.

[47] T. Lee, The design of CMOS radio-frequency integrated circits, 2nd ed. Cambridge University Press, 2002.

[48] A. der Ziel, Noise in solid state device and circuits, 1st ed. New York: J. Wiley &

Sons, 1990.

[49] T.-K. Nguyen, C.-H. Kim, G.-J. Ihm, M.-S. Yang, and S.-G. Lee, “CMOS low-noise amplifier design optimization techniques,” IEEE Trans. Microw. Theory Tech., vol. 15, pp. 448 – 450, May 2004.

[50] S.-C. Shin, S.-F. Lai, K.-Y. Lin, M.-D. Tsai, H. Wang, C.-S. Chang, and Y.-C. Tsai,

“18-26 GHz low-noise amplifiers using 130- and 90-nm bulk CMOS technologies,” in Proc. IEEE Radio Frequency Integrated Circuits Symp. Digest, June 2005, pp. 47 – 50.

[51] O. Dupuis, X. Sun, G. Carchon, P. Soussan, M. Ferndahl, S. Decoutere, and W. D.

Raedt, “24 GHz LNA in 90nm RF-CMOS with high-Q above-IC inductors,” in Proc.

IEEE, Nov.-Dec. 2005, pp. 183 – 186.

[52] M. Bao, H. Jacobsson, L. Aspemyr, A. Mercha, and G. Carchon, “A 20 GHz sub-1V low noise amplifier and a resistive mixer in 90 nm CMOS technology,” in Proc. IEEE Asia-Pacific Microwave Conference Conference, Nov.-Dec. 2005, pp. 183 – 186.

[53] S.-C. Shin, M.-D. Tsai, R.-C. Liu, K.-Y. Lin, and H. Wang, “A 24-GHz 3.9-dB NF low-noise amplifier using 0.18 μm CMOS technology,” IEEE Journal of Solid-State Circuits, vol. 15, pp. 448 – 450, July 2005.

[54] K.-L. Deng, M.-D. Tsai, C.-S. Lin, K.-Y. Lin, H. Wang, S.H. Wang, W.Y. Lien, and G.J. Chem, “A Ku-band CMOS low-noise amplifier,” in Proc. IEEE International Workshop on Radio-Frequency Integration Technology, Nov.-Dec. 2005, pp. 183 – 186.

[55] K.W. Yu, Y.-L. Lu, D.-C. Chang, V. Liang, and M.F. Chang, “K-band low-noise am-plifiers using 0.18 μm CMOS technology,” IEEE Microwave and Wireless Components Letters, vol. 14, pp. 106 – 108, March 2004.

[56] K.-W Yu, Y.-L Lu, D. Huang, D.-C Chang, V. Liang, and M.F. Chang, “24 GHz low-noise amplifier in 0.18 μm CMOS technology,” IEEE Electronics Letters, vol. 39, pp. 1559 – 1560, Oct. 2003.

[57] T. Yao, M.Q. Gordon, K.K.W. Tang, K.H.K. Yau, M.-T. Yang, P. Schvan, and S.P.

Voinigescu, “Algorithmic design of CMOS LNAs and PAs for 60-GHz Radio,” IEEE Journal of Solid-State Circuits, vol. 42, pp. 1433 – 1442, May 2007.

[58] D. Pienkowski and G. Boeck, “22 GHz amplifier using a 0.12 μm CMOS technol-ogy,” in Proc. IEEE International Conference on Microwaves, Radar and Wireless Communications, May 2006, pp. 1059 – 1062.

[59] L.M. Franca-Neto, B.A. Bloechel, and K. Soumyanath, “17GHz and 24GHz LNA designs based on extended-S-parameter with microstrip-on-die in 0.18 μm logic CMOS technology,” in Proc. IEEE Solid-State Circuits Conference (ESSCIRC ’03), Sept.

2003, pp. 149 – 152.

[60] B. Razavi, “A 60GHz direct-conversion CMOS receiver,” in Proc. IEEE International Solid-State Circuits Conference (ISSCC ’05), Feb. 2005, pp. 400 – 606.

[61] X. Guan and A. Hajimiri, “A 24-GHz CMOS front-end,” IEEE Journal of Solid-State Circuits, vol. 39, pp. 368 – 373, Feb. 2004.

[62] S. Maas, Microwave mixers, 1st ed. Artech House, Inc, 1986.

[63] I.C.H. Lai, Y. Kambayashi, and M. Fujishima, “60-GHz CMOS down-conversion mixer with slow-wave matching transmission lines,” in Proc. IEEE Asian Solid-State Circuits Conference, Nov. 2006, pp. 195–198.

[64] F. Ellinger, L.C. Rodoni, G. Sialm, C. Kromer, G. von Buren, M.L. Schmatz, C.

Menolfi, T. Toifl, T. Morf, M. Kossel, and H. Jackel, “30-40-GHz drain-pumped passive-mixer MMIC fabricated on VLSI SOI CMOS technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 5, pp. 1382 – 1391, May 2004.

[65] F. Ellinger, “26-34 GHz CMOS mixer,” IEEE Electronics Letters, vol. 40, pp. 1417 – 1419, Oct. 2004.

[66] ——, “26.530-GHz resistive mixer in 90 nm VLSI SOI CMOS technology with high linearity for WLAN,” IEEE Microwave and Wireless Components Letters, vol. 53, pp.

2559 – 2565, Aug. 2005.

[67] S. Emami, C.H. Doan, A.M. Niknejad, and R.W. Brodersen, “A 60-GHz down-converting CMOS single-gate mixer,” in Proc. IEEE Radio Frequency Integrated Cir-cuits Symp. Digest, June 2005, pp. 163 – 166.

[68] A. Verma, O.K.K. Li Gao, and J. Lin, “A K-band down-conversion mixer with 1.4-GHz bandwidth in 0.13 μm CMOS technology,” IEEE Microwave and Wireless Components Letters, vol. 15, pp. 493– 495, Aug. 2005.

[69] T.-Y. Yang and H.-K. Chiou, “A 28 GHz sub-harmonic mixer using LO doubler in 0.18 μm CMOS technology,” in Proc. IEEE Radio Frequency Integrated Circuits Symp.

Digest, June 2006, pp. 4 – 8.

[70] B.M. Motlagh, S.E. Gunnarsson, M. Ferndahl, and H. Zirath, “Fully integrated 60-GHz single-ended resistive mixer in 90− nm CMOS technology,” IEEE Microwave and Wireless Components Letters, vol. 16, pp. 25 – 27, Jan. 2006.

[71] B. Razavi, “A 60-GHz CMOS front-end,” IEEE Journal of Solid-State Circuits, vol. 41, pp. 17 – 22, Jan. 2006.

[72] L. Zhang and Z. Yu, “Transformer-based low voltage design of 17 GHz mixers with on-chip balun using 0.13−μ standard CMOS process,” in Proc. IEEE Electron Devices and Solid-State Circuits, Dec. 2007, pp. 457–460.

[73] L. Aspemyr, H. Jacobsson, B. Mingquan , H. Sjoland, M. Ferndahl, and G. Carchon,

“A 15 GHz and a 20 GHz low noise amplifier in 90 nm RF-CMOS,” in Proc. IEEE Asia-Pacific Microwave Conference Conference, Jan. 2006, pp. 4–7.

[74] C.-M. Lo, C.-S. Lin, and H. Wang, “A miniature V-band 3-stage cascode LNA in 0.13 μm CMOS,” in Proc. IEEE International Solid-State Circuits Conference (ISSCC

’06), Feb. 2006, pp. 1254 – 1263.

[75] C.-Y. Wu and F.R. Shahroury , “Gain controllable very low voltage (1 V) 8-9 GHz integrated CMOS LNAs,” in Proc. IEEE International Conference on Electronics, Circuits and Systems, Dec. 2006, pp. 78 – 81.

[76] R. Brederlow, W. Weber, J. Sauerer, S. Donnay, P. Wambacq, and M. Vertregt, “A mixed-signal design roadmap,” IEEE Design & Test of Computers, vol. 19, no. 6, pp.

34 – 46, Dec. 2001.

[77] T.K.K. Tsang and M.N. El-Gamal, “Gain controllable very low voltage (1 V) 8-9 GHz integrated CMOS LNAs,” in Proc. IEEE Radio Frequency Integrated Circuits Symp.

Digest, June 2002, pp. 205 – 208.

[78] S. Maas, The RF and microwave circuit design cookbook. Boston: Artech House, 1998.

[79] A. M. T. Hirota and M. Muraguchi, “Reduced-size branch-line and rat-race hybrids for uniplanar MMIC’s,” IEEE Trans. Microw. Theory Tech., vol. 38, no. 3, pp. 270–275, March 1990.

[80] P. Zhang, T. Nguyen, C. Lam, D. Gambetta, T. Soorapanth, B. Cheng, S. Hart, I. Sever, T. Bourdi, A. Tham, and B. Razavi, “A 5-GHz direct-conversion CMOS transceiver,” IEEE J. Solid-State Circuits, vol. 36, no. 5, pp. 810 – 815, Dec. 2001.

[81] W.C. Cheng, C.F. Chan, C.S. Choy, and K.P. Pun, “A 900 MHz 1.2 V CMOS mixer with high linearity,” in Proc. IEEE Circuits and Systems Asia-Pacific Conference, Oct. 2002, pp. 1 – 4.

[82] C.-Y. Wu, W.-C. Wang, F.R. Shahroury, Z.-D. Huang, and H.-J. Zhan, “Current-mode design techniques in low-voltage 24-GHz RF CMOS receiver front-end,” Springer Journal of Analog Integrated Circuits and Signal Processing, Jan. 2008.

[83] E. Kreyszig, Advanced engineering mathematics, 1st ed. Ohio: John Wiley, 1999.

相關文件