• 沒有找到結果。

Chapter 4 Conclusion and Future Work

A.3 Layout and Simulation Results

A.3.2 Simulation Results

Input impedance matching is characterized in Fig. A.3.3, which reveals the simulated

- 74 -

input return loss of better than -10 dB is attained over the 3-8 GHz. Fig A.3.4 shows the simulated power gain over the group1~3 of ultra wide-band receiver front-end achieves a power gain of 19-21.5 dB. The simulated method of conversion power gain adopts to fix LO frequency at center frequency and to sweep RF frequency from low band frequency to high band frequency. Fig A.3.5 shows the simulated noise figure of the circuit, which achieves noise figure of 4.3-6.2 dB from 3.1 to 8 GHz with IF=100 MHz.

Fig A.3.6 shows the input 1-dB compression point of the circuit, which is from -25.5 to -27.5 dBm. A two-tone test for the in-band third-order intercept point (IIP3) by sweeping the input power level was simulated at 3.1 GHz, 5.1 GHz and 8.1 GHz with tone spacing of 1 MHz. The output levels of the fundamental tone and the third-order intermodulation distortion are shown in Fig A.3.7 (a)-(c). An input IP3 (IIP3) of -15~-17.5 dBm is extrapolated. The supply voltage is 1.5 V and measured core current consumption is 13.1 mA. The performance of the RF front-end is finally summarized in Table A.1. Table A.2 lists the comparison of the recently ultra wide-band front-end circuit with this work.

1 2 3 4 5 6 7 8 9 10

Frequency (GHz) -20

-18 -16 -14 -12 -10 -8 -6 -4 -2 0

S11 (dB)

Sim S11

Fig A.3.3 Simulated S11 of the front-end circuit

- 75 -

3.168 3.696 4.224 4.752 5.28 5.808 6.336 6.864 7.392 7.92 Freqency (GHz)

13 14 15 16 17 18 19 20 21 22 23 24

Conversion Gain (dB)

Conversion Gain

Group1 Group2 Group3

Fig A.3.4 The simulated conversion power gain of the front-end circuit

3.1 3.6 4.1 4.6 5.1 5.6 6.1 6.6 7.1 7.6 8.1 8.6 Frequency (GHz)

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

NF (dB)

1 MHz 10 MHz 100 MHz

264 MHz 528 MHz

Fig A.3.5 The simulated noise figure of the front-end circuit

- 76 -

Fig A.3.6 The P1dB of the front-end circuit

-55 -50 -45 -40 -35 -30 -25 -20 -15 -10

Power RF (dBm) -140 Power RF (dBm)

-140

Power RF (dBm) -140

Fig A.3.7 Third-order intercept point of the circuit

- 77 -

Table A.1 Simulated performance of the UWB receiver front-end

Table A.2 Comparison of recently UWB front-end circuit

# at 5 GHz Reference

Specification

This Work . Sim.

Process CMOS 0.18um

Band Width 3.1-8.1

Supply Voltage(V) 1.5

RF Return Loss <-10

LO Power (dBm) -5

Conversion Power Gain 19-21.5

DSB NF 4.3-6.2

Total Power (mW)

CMOS 3.1-10.6 1.5 22.9~26.4 4.8-7.7 -11.3 57.6 [25] 2005

(Meas.)

0.25um

SiGe 3.1-10.6 2.7 20.6~21.8 4.1-6.2 -12.8 83

- 78 -

Reference

[1]IEEE 802.15 WPAN High Rate Alternative PHY Task Group 3a (TG3a).

http//www.ieee802.org/15/pub/TG3a.html.

[2] DS-UWB Physical Layer Submission to 802.15 Task Group 3a,[Online]. Available:

ftp://ftp.802wirelessworld.com/15/04/15-04-0137-03-003a-merger2-proposal-ds-uwb-u pdate.doc, available at

[3]Multi-Band OFDM Physical Layer Proposal for IEEE 802.15 Task Group 3a, [Online].

Available: ftp://ftp.802wirelessworld.com/15/ Archive/2003/Jul03/03268r3P802-15 TG3a-Multi-Band-CFP-Document. doc, available at

[4]Kuan-Hung Chen and Chorng-Kuang Wang, “A 3.1~10.6 GHz CMOS Cascaded Two-stage Distributed Amplifier for Ultra-Wideband Application,” IEEE Asia-Pacific Conference on 4-5 Aug. 2004 Page(s):296 – 299.

[5]R.-C. Liu, K.-L. Deng, and H. Wang, “A 0.6-22 GHz broadband CMOS distributed amplifier,” in IEEE Radio Frequency Integrated Circuits Symp. Dig. Papers, 2002, pp.

103-106

[6]Po-Yang Chang, “Low-voltage, Low-power, LNA and Multiband Frequency Synthesizer For UWB Receiver,” Thesis of Master’s Degree, Institute of communication engineering, NCTU, Taiwan, ROC, June 2005.

[7]Po-Yang Chang, “Low-voltage, Low-power, LNA and Multiband Frequency Synthesizer For UWB Receiver,” Thesis of Master’s Degree, Institute of communication engineering, NCTU, Taiwan, ROC, June 2005.

[8]Yang Lu, Kiat Seng Yeo, Alper Cabuk, Jianguo Ma, Manh Anh Do and ZhenghaoLu,

“A Novel CMOS Low-Noise Amplifier Design for 3.1-to 10.6-GHz Ultra-Wide-Band Wireless Receivers”, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I:

- 79 -

REGULAR PAPERS, VOL. 53, NO. 8, AUGUST 2006

[9] A. Safarian, A. Yazdi, and P. Heydari, “Design and Analysis of an Ultra wide-Band Distributed CMOS Mixer”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 13, No. 5, pp. 618-629, May, 2005.

[10] M. Tsai, H. Wang, “A 0.3-25 GHz Ultra-Wideband Mixer using Commercial 0.18um CMOS Technology”, IEEE Microwave and Wireless Components Letters, Vol. 14, No. 11, pp. 522-524, November 2004.

[11] Pao-Lin Wu “Low-Power CMOS RF Receiver Front-End With Stacked LNA- Mixer”, Thesis of Master’s Degree, Institute of Electro-physics, NCTU, Taiwan, ROC, June 2003.

[12] Stephen I. Long, Course Notes of Communication Electronics, University of California, Santa Barbara, 2003.

[13] Stephen I. Long , “RFIC MOS Gilbert cell mixer design”, Agilent EEsof design seminar.

[14] Chien-Nan Kuo, Course Notes of RF Integrated Circuits, National Chiao Tung University, 2003.

[15] Wei-zen cheng “Design of CMOS front-end circuits for MB-OFDM Ultra-Wideband System ”, Thesis of Master’s Degree, Department of Electrical Engineering ccu, Taiwan, ROC, June 2006.

[16]Shuzuo lou and howard c.long, “A WIDEBAND CMOS Variable gain low noise amplifier for acble tv tuners,” IEEE ASSCC 2005

[17]Leonard A. MacEachern, Tajinder Manku, “A Charge-Injection Method for Gilbert Cell Biasing,” Electrical and Computer Engineering, 1998. IEEE Canadian Conference on

[18] O. Mitrea, C. Popa, A. M. Manolescu, M. Glesner “A LINEARIZATION TECHNIQUE FOR RADIO FREQUENCY CMOS GILBERT -TYPE MIXERS”

- 80 -

ICECS-2003

[19]Shuenn-Yuh Lee, Ming-Feng Huang, Chung J. Kuo,” Even Harmonic Mixer With Current Reuse for Heterodyne/Direct Conversion Receivers” IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 52, NO. 9, SEPTEMBER 2005

[20]Song Ruifeng, Liao Huailin, Huang Ru, Wang Yangyuan ” Design of a 3-5-GHz ultra wideband BiFET mixer using 0.35-m SiGE BiCMOS technology” Microwave and Optical Technology Letters Volume 49, Issue 4, Date: April

[21] W. L. Chen, G. W. Huang, S. F. Chang ” BROADBAND CMOS MIXER CELL FOR UWB APPLICATIONS” Microwave and Optical Technology Letters Volume 49, Issue 1, Date: January 2007, Pages: 127-128

[22] Goo-Young Jung, Jae-Hoon Shin, Tae-Yeoul Yun ” low-noise UWB CMOS mixer using current bleeding and resonant inductor techniques” Microwave and Optical Technology Letters Volume 49, Issue 7, Date: July 2007, Pages: 1595-1597

[23] Jiseon Paek1, Bonghyuk Park2 and Songcheol Hong1 ,” A 3-5 GHz RF Receiver Front-End for UWB Wireless System “Proceedings of the 36th European Microwave Conference

[24] Bo Shi and Michael Yan Wah Chia , “A CMOS Receiver Front-End for 3.1-10.6 GHz Ultra-Wideband Radio ” Proceedings of the 3rd European Radar Conference

[25] Bo Shi and Michael Yan Wah Chia , “A 3.1 - 10.6 GHz W Front-End for Multi-Band UWB Wireless Receivers ” Radio Frequency Integrated Circuits Symposium.

[26] Yueh-Hua Yu; Chen, Y.-J.E.; Heo, D., “A 0.6-V Low Power UWB CMOS LNA”

Microwave and Wireless Components Letters, IEEE Volume 17, Issue 3, March 2007.

[27] Chang-Wan Kim; Min-Suk Kang; Phan Tuan Anh; Hoon-Tae Kim; Sang-Gug Lee;,

“An ultra-wideband CMOS low noise amplifier for 3-5-GHz UWB system”

- 81 -

Solid-State Circuits, IEEE Journal of Volume 40, Issue 2, Feb. 2005 Page(s):544 - 547

[28] Bevilacqua, A.; Niknejad, A.M.;, “An ultra-wideband CMOS LNA for 3.1 to 10.6 GHz wireless receivers” Solid-State Circuits Conference, 2004. Digest of Technical Papers.

ISSCC. 2004 IEEE International 15-19 Feb. 2004 Page(s):382 - 533 Vol.1

[29] Xie, Haolu; Wang, Xin; Wang, Albert; Wang, Zhihua; Zhang, Chun; Zhao, Bin;, “A Fully-Integrated Low-Power 3.1-10.6GHz UWB LNA in 0.18um CMOS” Radio and Wireless Symposium, 2007 IEEE

[30] Robert Hu, ” Wide-Band Matched LNA Design Using Transistor’s Intrinsic Gate–Drain Capacitor” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 54, NO. 3, MARCH 2006

- 82 -

Vita and Publication

姓 名: 熊子豪 學 歷:

國立新竹高級中學 ( 87 年 9 月 ~ 90 年 6 月)

私立逢甲大學電子工程學系 ( 90 年 9 月 ~ 94 年 6 月) 國立交通大學電信工程所碩士班 ( 94 年 9 月 ~ 96 年 6 月)

Publication Remarks:

1. Zi-Hao Hsiung and Christina F. Jou, “Novel Wideband CMOS LNA with Only an inductor as input matching network”, IEEE TENCON Conference, October 30 – November 2, 2007, Taipei, Taiwan.

2. Hui-I Wu, Zi-Hao Hsiung and Christina F. Jou, “A 0.75V CMOS Low-Noise Amplifier for Ultra Wide-band Wireless Receiver”, PIERS 26-30 March, 2007 in Beijing, China.

3. Win-Ming Chang, Zi-Hao Hsiung, Christina F. Jou “Ka-band 0.18 um CMOS low noise amplifier with 5.2 dB noise figure” Microwave and optical technology letters, Published Online: 27 Mar 2007 (p 1187-1189)

相關文件