• 沒有找到結果。

紫外光可聚合聚芴高分子之合成及其在多層高分子電激發光元件上之應用

N/A
N/A
Protected

Academic year: 2021

Share "紫外光可聚合聚芴高分子之合成及其在多層高分子電激發光元件上之應用"

Copied!
8
0
0

加載中.... (立即查看全文)

全文

(1)

IV

目錄

頁 審定書 授權書 中文摘要--- I 英文摘要---II 謝誌---III 目錄---IV Scheme 目錄---VI Table 目錄---VI Figure 目錄---VII 附圖目錄---X 第一章 緒論---1 1.1 有機電激發光簡介---1 1.1.1 有機電激發光的起源---1 1.1.2 電激發光原理與高分子發光二極體---3 1.1.2.1 電激發光原理---3 1.1.2.2 電極的選擇---7 1.1.2.3 發光層---11 1.1.2.4 能階理論---13 1.1.2.5 雙層與多層結構之元件介紹---15 1.1.2.6 高分子發光二極體材料簡介---17 1.2 文獻回顧---19 1.2.1 polyfluorene 發展---19 1.2.2 polyfluorene 的合成方法---20 1.2.3 polyfluorene 材料介紹---21

(2)

V 1.3 研究動機與分子設計---24 1.3.1 研究動機簡介---24 1.3.2 分子設計---26 第二章 實驗部份---28 2.1 試藥---28 2.2 測試儀器---28

2.2.1 核磁共振光譜儀( Nuclear Magnetic Resonance,NMR )---28

2.2.2 微差掃描卡計( Differential Scanning Calorimeter,DSC )---29

2.2.3 熱重分析儀( Thermal Gravimetric Analyzer,TGA )---29

2.2.4 凝膠滲透層析儀( Gel Permeation Chromatography,GPC )----29

2.2.5 紫外線與可見光譜儀 ( UV-Vis Spectrophotometer )---29 2.2.6 螢光光譜儀 ( Luminescence Spectrophotometer ) ---30 2.2.7 循環伏安計量儀( Cyclic Voltammetry,CV )---30 2.2.8 紫外光反應器( Photochemical reactor )---30 2.2.9 LED 元件性質的量測---30 2.3 合成部份---31 2.3.1 單體 M1~M7 的合成---31 2.3.2 高分子 P1~P7 的合成---37 2.4 元件的製作---43 2.4.1 ITO pattern 的製作---43 2.4.2 ITO 玻璃的清洗流程---44 2.4.3 元件的製備---44 第三章 結果與討論---52 3.1 單體 M1∼M7 的結構鑑定---52 3.2 聚合物 P1∼P7 的合成與鑑定---52 3.3 熱性質分析---53 3.4 聚合物 P1∼P7 之光譜特性分析---55

(3)

VI 3.4.1 UV-Visible 吸收光譜分析---55 3.4.2 螢光(Fluorescence)光譜分析---59 3.4.3 循環伏安計量(Cyclic voltammetry)分析---65 3.5 元件性質研究---71 3.5.1 元件架構介紹---71 3.5.2 二極體元件 EL 性質的量測---72 3.6 多層式白光元件性質研究---82 3.6.1 多層式白光元件架構介紹---82 3.6.2 多層式白光元件性質的量測---82 第四章 結論---86 第五章 參考文獻---88

List of Schemes

Scheme 1 Synthesis of photo-crosslinkable monomer M1---46

Scheme 2 Synthesis of photo-crosslinkable monomers M3 and M4 and polymer P1---47

Scheme 3 Synthesis of photo-crosslinkable monomer M5 and polymers P2 and P3---48

Scheme 4 Synthesis of photo-crosslinkable monomer M6 and polymer P4 and P5---49

Scheme 5 Synthesis of polymers P6 and P7---50

Scheme 6 Synthesis of End cap reagent---51

List of tables

Table 1-1 The work function of electrodes---9

(4)

VII

Table 1-2 Dependence of emission efficiency on electron injecting

electrodes of PPV devices---9

Table 3-1 Molecular weight and polydispersity of polymers P1∼P7---52

Table 3-2 Thermal transition and thermal degradation temperatures of polymers P1∼P7---53

Table. 3-3 UV and PL properties of polymers P1∼P7---65

Table. 3-4 Energy level of polymers P1∼P7---70

Table. 3-5 Device properties of polymers P1∼P7---73

Table. 3-6 The propertoes of films---82

List of Figures

Fig. 1-1 Schematic of the EL device---2

Fig. 1-2 The structures of PVK and PPV---3

Fig. 1-3 Diagram of energy transfer---5

Fig. 1-4 The structure of single-layer type OLED device---5

Fig. 1-5 Band diagram of excitation formation in EL---6

Fig. 1-6 Energy diagram of excitation formation in EL---6

Fig. 1-7 Diagram of energy levels and structure of OLEDs device---7

Fig. 1-8 Schematic energy-level diagram for an ITO/PPV/Al device---8

Fig. 1-9 Energy diagram near the Ca/Organic layer interface depicting the excitons dissociation process in the presence of gap states---10

Fig. 1-10 Materials of host---11

Fig. 1-11 Materials of guest---12

Fig. 1-12 Materials of electron transfer layer---12

(5)

VIII

Fig. 1-14 Diagram of energy levels---14

Fig. 1-15 Structures of double-layer-type OLED device---16

Fig. 1-16 Structures of triple-layer-type OLED device---16

Fig. 1-17 PPV derivatives and their emission color range---17

Fig. 1-18 Poly(alkylthiophene) derivatives and their emission color range---18

Fig. 1-19 Examples of blue-emitting materials---18

Fig. 1-20 Polymer structures (a) unsubstituted PPP (b) substituted PPP (c) C9 position substituted Polyfluorene---19

Fig. 1-21 The fluorene based copolymers---24

Fig. 1-25 Synthesis of crosslinkable organic light emitting materials---25

Fig. 3-1 UV-visible absorption spectrum of P1---56

Fig. 3-2 UV-visible absorption spectrum of P2---56

Fig. 3-3 UV-visible absorption spectrum of P3---57

Fig. 3-4 UV-visible absorption spectrum of P4---57

Fig. 3-5 UV-visible absorption spectrum of P5---58

Fig. 3-6 UV-visible absorption spectrum of P6---58

Fig. 3-7 UV-visible absorption spectrum of P7---59

Fig. 3-8 PL spectrum of P1---60 Fig. 3-9 PL spectrum of P2---61 Fig. 3-10 PL spectrum of P3---61 Fig. 3-11 PL spectrum of P4---62 Fig. 3-12 PL spectrum of P5---62 Fig. 3-13 PL spectrum of P6---63 Fig. 3-14 PL spectrum of P7---63

Fig. 3-15 UV-PL spectrum of P1 in film state---64

Fig. 3-16 UV-PL spectrum of P2 in film state---64 Fig. 3-17 Cyclic voltammogram of the oxidation and energy band

(6)

IX

diagram of P1---66

Fig. 3-18 Cyclic voltammogram of the oxidation and energy band diagram of P2---67

Fig. 3-19 Cyclic voltammogram of the oxidation and energy band diagram of P3---67

Fig. 3-20 Cyclic voltammogram of the oxidation and energy band diagram of P4---68

Fig. 3-21 Cyclic voltammogram of the oxidation and energy band diagram of P5---68

Fig. 3-22 Cyclic voltammogram of the oxidation and energy band diagram of P6---69

Fig. 3-23 Cyclic voltammogram of the oxidation and energy band diagram of P7---69

Fig. 3-24 Energy-level diagrem of polymers P1∼P7---72

Fig. 3-25 EL and PL spectra of P1---75

Fig. 3-26 EL and PL spectra of P2---75

Fig. 3-27 EL and PL spectra of P3---76

Fig. 3-28 EL and PL spectra of P4---76

Fig. 3-29 EL and PL spectra of P5---77

Fig. 3-30 EL and PL spectra of P6---77

Fig. 3-31 EL and PL spectra of P7---78

Fig. 3-32 J-V and L-V curve for device with the configuration ITO/PEDOT/polymer/Ca/Al of P1---78

Fig. 3-33 J-V and L-V curve for device with the configuration ITO/PEDOT/polymer/Ca/Al of P2---79

Fig. 3-34 J-V and L-V curve for device with the configuration ITO/PEDOT/polymer/Ca/Al of P3---79

(7)

X

Fig. 3-35 J-V and L-V curve for device with the configuration

ITO/PEDOT/polymer/Ca/Al of P4---80

Fig. 3-36 J-V and L-V curve for device with the configuration ITO/PEDOT/polymer/Ca/Al of P5---80

Fig. 3-37 J-V and L-V curve for device with the configuration ITO/PEDOT/polymer/Ca/Al of P6---81

Fig. 3-38 J-V and L-V curve for device with the configuration ITO/PEDOT/polymer/Ca/Al of P7---81

Fig. 3-39 Structure of multi-layer white light device---82

Fig. 3-40 EL spectra of EL1--- 84

Fig. 3-41 EL spectra of EL2---84

Fig. 3-42 EL spectra of multi-layer white light device---85

Fig. 3-43 Y-V and L-V curve for multi-layer white light device---85

List of 附圖

附圖.1

1

H-NMR spectrum of M1---93

附圖.2

1

H-NMR spectrum of M2---94

附圖.3

1

H-NMR spectrum of M3---95

附圖.4

1

H-NMR spectrum of M4---96

附圖.5

1

H-NMR spectrum of M5---97

附圖.6

1

H-NMR spectrum of M6---98

附圖.7

1

H-NMR spectrum of M7---99

附圖.8

13

C-NMR spectrum of M1---100

附圖.9

13

C-NMR spectrum of M2---101

附圖.10

13

C-NMR spectrum of M3---102

(8)

XI

附圖.11

13

C-NMR spectrum of M4---103

附圖.12

13

C-NMR spectrum of M5---104

附圖.13

13

C-NMR spectrum of M6---105

附圖.14

13

C-NMR spectrum of M7---106

附圖.15 Mass spectrum of M1---107

附圖.16 Mass spectrum of M2---108

附圖.17 Mass spectrum of M3---109

附圖.18 Mass spectrum of M4---110

附圖.19 Mass spectrum of M5---111

附圖.20 Mass spectrum of M6---112

附圖.21 Mass spectrum of M7---113

附圖.22

1

H-NMR spectrum of P1---114

附圖.23

1

H-NMR spectrum of P2---115

附圖.24

1

H-NMR spectrum of P3---116

附圖.25

1

H-NMR spectrum of P4---117

附圖.26

1

H-NMR spectrum of P5---118

附圖.27

1

H-NMR spectrum of P6---119

附圖.28

1

H-NMR spectrum of P7---120

附圖.29 (a)TGA (b)DSC thermogram of P1---121

附圖.30 (a)TGA (b)DSC thermogram of P2---122

附圖.31 (a)TGA (b)DSC thermogram of P3---123

附圖.32 (a)TGA (b)DSC thermogram of P4---124

附圖.33 (a)TGA (b)DSC thermogram of P5---125

附圖.34 (a)TGA (b)DSC thermogram of P6---126

附圖.35 (a)TGA (b)DSC thermogram of P7---127

參考文獻

相關文件

A function f is said to be continuous on an interval if it is continuous at each interior point of the interval and one-sidedly continuous at whatever endpoints the interval

在慢速乾燥填補了 ZnO 奈米柱和 Polymer 的間距,因為延長了乾燥 時間,溼膜有很長時間有效滲入 ZnO

包括具有藥理活性的高分子和低分子藥物高分子化或

其次醋酸乙烯酯可與其他單體共聚合 ( copolymerization),可改善各單 體形成聚合物之缺點,如與氯乙烯單體 ( vinyl chloride monomer,簡稱 VCM ) 共聚合,可改善聚氯乙烯 (

接枝共聚合反應是材料改質的主要技術之ㄧ,已廣泛應用於高分子材料及生

塑合板並配合五金配件製成建築用之門、窗、框及 1 至 3 階之樓梯 或其相關結合體等。試題分別由 2 至 3

一般而言,物質的黏度與流體間的凝聚 力和分子間的動量轉移率有關。液體分子與

一般而言,物質的黏度與流體間的凝聚 力和分子間的動量轉移率有關。液體分子與